Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul 2;345(10):1394-9.
doi: 10.1016/j.carres.2010.02.018. Epub 2010 Feb 24.

Efficient synthesis of 6'-sialyllactose, 6,6'-disialyllactose, and 6'-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224

Affiliations

Efficient synthesis of 6'-sialyllactose, 6,6'-disialyllactose, and 6'-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224

Sophie Drouillard et al. Carbohydr Res. .

Abstract

We have previously reported the efficient conversion of lactose into 3'-sialyllactose by high cell density cultures of a genetically engineered Escherichia coli strain expressing the Neisseria meningitidis gene for alpha-(2-->3)-sialyltransferase [Fierfort, N.; Samain, E. J. Biotechnol. 2008, 134, 261-265.]. First attempts to use a similar strategy to produce 6'-sialyllactose with a strain expressing alpha-(2-->6)-sialyltransferase from the Photobacterium sp. JT-ISH-224 led to the production of a trisaccharide that was identified as KDO-lactose (2-keto-3-deoxy-manno-octonyllactose). This result showed that alpha-(2-->6)-sialyltransferase was able to use CMP-KDO as sugar donor and preferentially used CMP-KDO over CMP-Neu5Ac. By reducing the expression level of the sialyltransferase gene and increasing that of the neuABC genes, we have been able to favour the formation of 6'-sialyllactose and to prevent the formation of KDO-lactose. However, in this case, a third lactose derivative, which was identified as 6,6'-disialyllactose, was also produced. Formation of 6,6'-disialyllactose was mainly observed under conditions of lactose shortage. On the other hand, when the culture was continuously fed with an excess of lactose, 6'-sialyllactose was almost the only product detected and its final concentration was higher than 30g/L of culture medium.

PubMed Disclaimer

MeSH terms

LinkOut - more resources