Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar:434:609-26.
doi: 10.1113/jphysiol.1991.sp018489.

Post-inhibitory excitation and inhibition in layer V pyramidal neurones from cat sensorimotor cortex

Affiliations

Post-inhibitory excitation and inhibition in layer V pyramidal neurones from cat sensorimotor cortex

W J Spain et al. J Physiol. 1991 Mar.

Abstract

1. The effect of conditioning pre-pulses on repetitive firing evoked by intracellular current injection was studied in layer V pyramidal neurones in a brain slice preparation of cat sensorimotor cortex. Most cells displayed spike frequency adaptation (monotonic decline of firing rate to a tonic value) for several hundred milliseconds when depolarized from resting potential, but the cells differed in their response when pre-pulses to other potentials were employed. In one group of cells, the initial firing rate increased as the pre-pulse potential was made more negative (post-hyperpolarization excitation). Adaptation was abolished by depolarizing prepulses. In a second group, the initial firing rate decreased as the pre-pulse potential was made more negative (post-hyperpolarization inhibition). Hyperpolarizing pre-pulses caused the initial firing to fall below and accelerate to the tonic rate over a period of several seconds. A third group displayed a mixture of these two responses: the first three to seven interspike intervals became progressively shorter and subsequent intervals became progressively longer as the conditioning pre-pulse was made more negative (post-hyperpolarization mixed response). 2. Cells were filled with horseradish peroxidase or biocytin after the effect of pre-pulses was determined. All cells whose firing patterns were altered by pre-pulses were large layer V pyramidal neurones. Cells showing post-hyperpolarization excitation or a mixed response had tap root dendrites, fewer spines on the apical dendrite and larger soma diameters than cells showing post-hyperpolarization inhibition. 3. Other electrophysiological parameters varied systematically with the response to conditioning pre-pulses. Both the mean action potential duration and the input resistance of cells showing post-hyperpolarization excitation were about half the values measured in cells showing post-hyperpolarization inhibition. Values were intermediate in cells showing a post-hyperpolarization mixed response. The after-hyperpolarization following a single evoked action potential was 20% briefer in cells showing post-hyperpolarization excitation compared to those showing inhibition. 4. Membrane current measured during voltage clamp suggested that two ionic mechanisms accounted for the three response patterns. Post-hyperpolarization excitation was caused by deactivation of the inward rectifier current (Ih). Selective reduction of Ih with extracellular caesium diminished post-hyperpolarization excitation, whereas blockade of calcium influx had no effect. Post-hyperpolarization inhibition was caused by enhanced activation of a slowly inactivating potassium current. Selective reduction of this current with 4-aminopyridine diminished the post-hyperpolarization inhibition. 5. Chord conductances underlying both Ih and the slow-transient potassium current were measured and divided by leakage conductance to control for differences in cell size.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurophysiol. 1968 Jan;31(1):14-27 - PubMed
    1. Brain Res. 1985 Dec 16;359(1-2):347-50 - PubMed
    1. Brain Res. 1979 Dec 14;178(2-3):251-74 - PubMed
    1. J Neurophysiol. 1980 Oct;44(4):773-91 - PubMed
    1. J Histochem Cytochem. 1981 Jun;29(6):775 - PubMed

Publication types

LinkOut - more resources