Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar 22;188(6):759-68.
doi: 10.1083/jcb.200910104. Epub 2010 Mar 15.

Targeting of drugs and nanoparticles to tumors

Affiliations
Review

Targeting of drugs and nanoparticles to tumors

Erkki Ruoslahti et al. J Cell Biol. .

Abstract

The various types of cells that comprise the tumor mass all carry molecular markers that are not expressed or are expressed at much lower levels in normal cells. These differentially expressed molecules can be used as docking sites to concentrate drug conjugates and nanoparticles at tumors. Specific markers in tumor vessels are particularly well suited for targeting because molecules at the surface of blood vessels are readily accessible to circulating compounds. The increased concentration of a drug in the site of disease made possible by targeted delivery can be used to increase efficacy, reduce side effects, or achieve some of both. We review the recent advances in this delivery approach with a focus on the use of molecular markers of tumor vasculature as the primary target and nanoparticles as the delivery vehicle.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Synaphic targeting of tumors. The targeted receptors can be on tumor cells, tumor vessels, or shared by both. (A) Probes that recognize solely tumor cells provide little improvement of tumor accumulation over a nontargeted probe. (B) Probes that recognize tumor vessels accumulate in the tumor, but entry into tumor tissue relies on passive mechanisms. (C) Probes that recognize both the vessels and tumor cells combine the (limited) efficiency of the two targeting mechanisms. (D) Tumor-penetrating targeting probes (so far only peptides with such characteristics are known) provide a particularly potent targeting system.
Figure 2.
Figure 2.
Saturation of receptors affects the specificity of synaphic targeting. Once the receptors of the homing peptide have been saturated, the specificity of the targeting declines (adapted from experimental data in Kranenborg et al., 1998). au, arbitrary units.
Figure 3.
Figure 3.
Treating tumors with cooperative nanoparticles. This scheme illustrates a method to induce cooperative nanoparticle behavior that results in more effective delivery of treatments to tumors. This example uses a two-component system consisting of gold nanorods and targeted, thermally sensitive liposomes. (A) Passive accumulation of gold nanorods. The circulating nanorods passively accumulate in the tumor as a result of leakiness of the tumor vasculature (the EPR effect). (B) Laser irradiation of nanorods activates tumor cells. The gold nanorods absorb laser energy, heating the surrounding tissue. This localized rise in temperature increases tissue permeability and induces expression of receptor proteins on the surface of the tumor cells. (C) Targeted nanoparticles (liposomes) bind to tumor. Receptor-specific targeting peptides attached onto the secondary nanoparticles allow these particles to bind to the overexpressed receptor proteins on the heat-activated tumor cells. (D) Activation of targeted liposomes releases drug. In this example, thermally responsive liposomes containing a drug payload are heated with a second laser pulse, inducing rupture of the liposome shell and release of its contents.

Similar articles

Cited by

References

    1. Abe K., Shoji M., Chen J., Bierhaus A., Danave I., Micko C., Casper K., Dillehay D.L., Nawroth P.P., Rickles F.R. 1999. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc. Natl. Acad. Sci. USA. 96:8663–8668 10.1073/pnas.96.15.8663 - DOI - PMC - PubMed
    1. Alitalo K., Carmeliet P. 2002. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell. 1:219–227 10.1016/S1535-6108(02)00051-X - DOI - PubMed
    1. Arap W., Pasqualini R., Ruoslahti E. 1998. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 279:377–380 10.1126/science.279.5349.377 - DOI - PubMed
    1. Arap W., Haedicke W., Bernasconi M., Kain R., Rajotte D., Krajewski S., Ellerby H.M., Bredesen D.E., Pasqualini R., Ruoslahti E. 2002. Targeting the prostate for destruction through a vascular address. Proc. Natl. Acad. Sci. USA. 99:1527–1531 10.1073/pnas.241655998 - DOI - PMC - PubMed
    1. Bartlett D.W., Su H., Hildebrandt I.J., Weber W.A., Davis M.E. 2007. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. USA. 104:15549–15554 10.1073/pnas.0707461104 - DOI - PMC - PubMed

Publication types