Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Apr;20(4):400-7.
doi: 10.1038/cr.2010.32. Epub 2010 Mar 16.

Polyglutamine toxicity in non-neuronal cells

Affiliations
Review

Polyglutamine toxicity in non-neuronal cells

Jennifer W Bradford et al. Cell Res. 2010 Apr.

Abstract

The neurodegenerative polyglutamine diseases are caused by an expansion of unstable polyglutamine repeats in various disease proteins. Although these mutant proteins are expressed ubiquitously in neuronal and non-neuronal cells, they cause selective degeneration of specific neuronal populations. Recently, increasing evidence shows that polyglutamine disease proteins also affect non-neuronal cells. However, it remains unclear how the expression of polyglutamine proteins in non-neuronal cells contributes to the course of the polyglutamine diseases. Here, we discuss recent findings about the expression of mutant polyglutamine proteins in non-neuronal cells and their influence on neurological symptoms. Understanding the contribution of non-neuronal polyglutamine proteins to disease progression will help elucidate disease mechanisms and also help in the development of new treatment options.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: None declared.

Similar articles

Cited by

References

    1. Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci. 2000;23:217–247. - PubMed
    1. Li SH, Li XJ. Multiple pathways contribute to the pathogenesis of Huntington disease. Mol Neurodegeneration. 2006;1:19. - PMC - PubMed
    1. Martin B, Golden E, Carlson OD, et al. Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease. Diabetes. 2009;58:318–328. - PMC - PubMed
    1. van der Burg JM, Björkqvist M, Brundin P. Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol. 2009;8:765–774. - PubMed
    1. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–983. - PubMed

Publication types

MeSH terms