Metabolic flux distributions: genetic information, computational predictions, and experimental validation
- PMID: 20232063
- DOI: 10.1007/s00253-010-2506-6
Metabolic flux distributions: genetic information, computational predictions, and experimental validation
Abstract
Flux distributions in intracellular metabolic networks are of immense interest to fundamental and applied research, since they are quantitative descriptors of the phenotype and the operational mode of metabolism in the face of external growth conditions. In particular, fluxes are of relevance because they do not belong to the cellular inventory (e.g., transcriptome, proteome, metabolome), but are rather quantitative moieties, which link the phenotype of a cell to the specific metabolic mode of operation. A frequent application of measuring and redirecting intracellular fluxes is strain engineering, which ultimately aims at shifting metabolic activity toward a desired product to achieve a high yield and/or rate. In this article, we first review the assessment of intracellular flux distributions by either qualitative or rather quantitative computational methods and also discuss methods for experimental measurements. The tools at hand will then be exemplified on strain engineering projects from the literature. Finally, the achievements are discussed in the context of future developments in Metabolic Engineering and Synthetic Biology.
Similar articles
-
New experimental and theoretical tools for metabolic engineering of micro-organisms.Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 2001;66(3a):11-30. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 2001. PMID: 15954559
-
Opportunities for yeast metabolic engineering: Lessons from synthetic biology.Biotechnol J. 2011 Mar;6(3):262-76. doi: 10.1002/biot.201000308. Epub 2011 Feb 16. Biotechnol J. 2011. PMID: 21328545 Review.
-
Using flux balance analysis to guide microbial metabolic engineering.Methods Mol Biol. 2012;834:197-216. doi: 10.1007/978-1-61779-483-4_13. Methods Mol Biol. 2012. PMID: 22144361
-
Genome-Scale 13C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae.Methods Mol Biol. 2019;1859:317-345. doi: 10.1007/978-1-4939-8757-3_19. Methods Mol Biol. 2019. PMID: 30421239
-
[Application of metabolic flux ratio analysis in metabolic engineering--a review].Sheng Wu Gong Cheng Xue Bao. 2009 Sep;25(9):1303-11. Sheng Wu Gong Cheng Xue Bao. 2009. PMID: 19938471 Review. Chinese.
Cited by
-
The Metabolic Flux Probe (MFP)-Secreted Protein as a Non-Disruptive Information Carrier for 13C-Based Metabolic Flux Analysis.Int J Mol Sci. 2021 Aug 30;22(17):9438. doi: 10.3390/ijms22179438. Int J Mol Sci. 2021. PMID: 34502345 Free PMC article.
-
Integrating cellular metabolism into a multiscale whole-body model.PLoS Comput Biol. 2012;8(10):e1002750. doi: 10.1371/journal.pcbi.1002750. Epub 2012 Oct 25. PLoS Comput Biol. 2012. PMID: 23133351 Free PMC article.
-
Proline availability regulates proline-4-hydroxylase synthesis and substrate uptake in proline-hydroxylating recombinant Escherichia coli.Appl Environ Microbiol. 2013 May;79(9):3091-100. doi: 10.1128/AEM.03640-12. Epub 2013 Mar 1. Appl Environ Microbiol. 2013. PMID: 23455348 Free PMC article.
-
Let's talk about flux or the importance of (intracellular) reaction rates.Microb Biotechnol. 2017 Jan;10(1):28-30. doi: 10.1111/1751-7915.12455. Epub 2016 Nov 11. Microb Biotechnol. 2017. PMID: 27863005 Free PMC article. No abstract available.
-
Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors.Curr Opin Biotechnol. 2010 Oct;21(5):670-6. doi: 10.1016/j.copbio.2010.05.011. Epub 2010 Jul 14. Curr Opin Biotechnol. 2010. PMID: 20637598 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases