Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 May 5;219(1):69-77.
doi: 10.1016/0022-2836(91)90858-4.

Identification of the acyl transfer site of fatty acyl-protein synthetase from bioluminescent bacteria

Affiliations
Comparative Study

Identification of the acyl transfer site of fatty acyl-protein synthetase from bioluminescent bacteria

R R Soly et al. J Mol Biol. .

Abstract

Fatty acid activation, transfer, and reduction by the fatty acid reductase multienzyme complex from Photobacterium phosphoreum to generate fatty aldehydes for the luminescence reaction is regulated by the interaction of the synthetase and reductase subunits of this complex. Identification of the specific site involved in covalent transfer of the fatty acyl group between the sites of activation and reduction on the synthetase and reductase subunits, respectively, is a critical step in understanding how subunit interactions modulate the flow of fatty acyl groups through the fatty acid reductase complex. To accomplish this goal, the nucleotide sequence of the luxE gene coding for the acyl-protein synthetase subunit (373 amino acid residues) was determined and the conserved cysteinyl residues implicated in fatty acyl transfer identified. Using site-specific mutagenesis, each of the five conserved cysteine residues was converted to a serine residue, the mutated synthetases expressed in Escherichia coli, and the properties of the mutant proteins examined. On complementation of four of the mutants with the reductase subunit, the synthetase subunit was acylated and the acyl group could be reversibly transferred between the reductase and synthetase subunits, and fatty acid reductase activity was fully regenerated. As well, sensitivity of the acylated synthetases to hydroxylamine cleavage (under denaturation conditions to remove any conformational effects on reactivity) was retained, showing that a cysteine and not a serine residue was still acylated. However, substitution of a cysteine residue only ten amino acid residues from the carboxyl terminal (C364S) prevented acylation of the synthetase and regeneration of fatty acid reductase activity. Moreover, this mutant protein preserved its ability to activate fatty acid to fatty acyl-AMP but could not accept the acyl group from the reductase subunit, demonstrating that the C364S synthetase had retained its conformation and specifically lost the fatty acylation site. These results provide evidence that the flow of fatty acyl groups in the fatty acid reductase complex is modulated by interaction of the reductase subunit with a cysteine residue very close to the carboxyl terminal of the synthetase, which in turn acts as a flexible arm to transfer acyl groups between the sites of activation and reduction.

PubMed Disclaimer

Publication types

LinkOut - more resources