Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 14;132(10):104110.
doi: 10.1063/1.3317477.

Iterative Monte Carlo with bead-adapted sampling for complex-time correlation functions

Affiliations

Iterative Monte Carlo with bead-adapted sampling for complex-time correlation functions

Vikram Jadhao et al. J Chem Phys. .

Abstract

In a recent communication [V. Jadhao and N. Makri, J. Chem. Phys. 129, 161102 (2008)], we introduced an iterative Monte Carlo (IMC) path integral methodology for calculating complex-time correlation functions. This method constitutes a stepwise evaluation of the path integral on a grid selected by a Monte Carlo procedure, circumventing the exponential growth of statistical error with increasing propagation time, while realizing the advantageous scaling of importance sampling in the grid selection and integral evaluation. In the present paper, we present an improved formulation of IMC, which is based on a bead-adapted sampling procedure; thus leading to grid point distributions that closely resemble the absolute value of the integrand at each iteration. We show that the statistical error of IMC does not grow upon repeated iteration, in sharp contrast to the performance of the conventional path integral approach which leads to exponential increase in statistical uncertainty. Numerical results on systems with up to 13 degrees of freedom and propagation up to 30 times the "thermal" time variant Planck's over 2pibeta/2 illustrate these features.

PubMed Disclaimer

LinkOut - more resources