Interactions between 1alpha,25(OH)2D3 and residues in the ligand-binding pocket of the vitamin D receptor: a correlated fragment molecular orbital study
- PMID: 20236613
- DOI: 10.1016/j.jsbmb.2010.03.028
Interactions between 1alpha,25(OH)2D3 and residues in the ligand-binding pocket of the vitamin D receptor: a correlated fragment molecular orbital study
Abstract
To provide physicochemical insight into the role of each residue in the ligand-binding pocket (LBP) of the vitamin D receptor (VDR), we evaluated the energies of the interactions between the LBP residues and 1alpha,25(OH)2D3 by using an ab initio fragment molecular orbital (FMO) method at the Møller-Plesset second-order perturbation (MP2) level. This FMO-MP2 method can be used to correctly evaluate both electrostatic and van der Waals dispersion interactions, and it affords these interaction energies separately. We deduced the nature of each interaction and determined the importance of all the LBP residues involved in ligand recognition by the VDR. We previously reported the results of alanine-scanning mutational analysis (ASMA) of all 34 non-alanine residues lining the LBP of the human VDR. The theoretical results in combination with the ASMA results enabled us to assign the role of each LBP residue. We concluded that electrostatic interactions are the major determinant of the ligand-binding activity and ligand recognition specificity and that van der Waals interactions are important for protein folding and, in turn, for cofactor binding.
Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Similar articles
-
Ligand-dependent conformation change reflects steric structure and interactions of a vitamin D receptor/ligand complex: a fragment molecular orbital study.J Steroid Biochem Mol Biol. 2010 Jul;121(1-2):56-9. doi: 10.1016/j.jsbmb.2010.03.024. Epub 2010 Mar 15. J Steroid Biochem Mol Biol. 2010. PMID: 20236615
-
19F NMR study on the complex of fluorinated vitamin D derivatives with vitamin D receptor: elucidation of the conformation of vitamin D ligands accommodated in the receptor.J Med Dent Sci. 2011 Dec 28;58(4):103-12. J Med Dent Sci. 2011. PMID: 23896933
-
Alanine scanning mutational analysis of the ligand binding pocket of the human Vitamin D receptor.J Steroid Biochem Mol Biol. 2007 Mar;103(3-5):282-5. doi: 10.1016/j.jsbmb.2006.12.018. Epub 2007 Jan 16. J Steroid Biochem Mol Biol. 2007. PMID: 17223344
-
Crystal Structure of the Vitamin D Receptor Ligand-Binding Domain with Lithocholic Acids.Vitam Horm. 2016;100:117-36. doi: 10.1016/bs.vh.2015.10.004. Epub 2015 Dec 8. Vitam Horm. 2016. PMID: 26827950 Review.
-
Molecular basis of the selective activity of vitamin D analogues.J Cell Biochem. 2003 Feb 1;88(2):274-81. doi: 10.1002/jcb.10337. J Cell Biochem. 2003. PMID: 12520526 Review.
Cited by
-
Protein stabilization utilizing a redefined codon.Sci Rep. 2015 May 18;5:9762. doi: 10.1038/srep09762. Sci Rep. 2015. PMID: 25985257 Free PMC article.
-
Induced fit docking, and the use of QM/MM methods in docking.Drug Discov Today Technol. 2013 Sep;10(3):e411-8. doi: 10.1016/j.ddtec.2013.02.003. Drug Discov Today Technol. 2013. PMID: 24050138 Free PMC article. Review.
-
Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling.Molecules. 2015 Nov 18;20(11):20473-86. doi: 10.3390/molecules201119713. Molecules. 2015. PMID: 26593892 Free PMC article. Review.
-
Syntheses of 25-Adamantyl-25-alkyl-2-methylidene-1α,25-dihydroxyvitamin D3 Derivatives with Structure-Function Studies of Antagonistic and Agonistic Active Vitamin D Analogs.Biomolecules. 2023 Jul 6;13(7):1082. doi: 10.3390/biom13071082. Biomolecules. 2023. PMID: 37509118 Free PMC article.
-
Computer-aided de novo ligand design and docking/molecular dynamics study of vitamin D receptor agonists.J Mol Model. 2012 Jan;18(1):203-12. doi: 10.1007/s00894-011-1066-8. Epub 2011 Apr 27. J Mol Model. 2012. PMID: 21523537
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous