Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Feb;16(1):51-64.
doi: 10.1177/1073858409341085.

Homeostatic regulation of neuronal excitability by K(+) channels in normal and diseased brains

Affiliations
Review

Homeostatic regulation of neuronal excitability by K(+) channels in normal and diseased brains

Hiroaki Misonou. Neuroscientist. 2010 Feb.

Abstract

K(+)-selective ion channels are critical determinants of membrane excitability in neuronal cells. Like many other cells in our body, neuronal cells have a propensity to maintain their homeostasis. Action potential firing is the most important function to maintain in brain neurons, as they are the elements of neural networks. If one element fires action potentials at an abnormally high rate, the entire network could become epileptic. Therefore, brain neurons adjust their intrinsic membrane excitability to maintain the firing rate within their own optimal operational range. When a neuron receives an enormous input, it will reduce the membrane excitability to prevent overshooting. When it is deprived of stimulus, the membrane becomes more excitable to avoid total quiescence. The homeostatic regulation of intrinsic excitability provides stability to the neural network in the face of dynamic and plastic synaptic inputs. In the past decade, we have learned that neurons achieve this type of homeostatic regulation through a variety of ion channels, including K(+) channels. It has also become clear that under certain pathological conditions, these homeostatic mechanisms provide neuroprotection. In this article, I will review recent advances in our understanding of K(+) channel-mediated homeostatic regulation of neuronal excitability and discuss involvement of these channels in hyperexcitable diseases where they provide neuroprotection.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources