Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;51(4):610-7.
doi: 10.2967/jnumed.109.068858. Epub 2010 Mar 17.

Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner

Affiliations
Free article

Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner

Jonathan A Disselhorst et al. J Nucl Med. 2010 Apr.
Free article

Abstract

The positron emitters (18)F, (68)Ga, (124)I, and (89)Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner (for (124)I and (68)Ga) will deteriorate the effective spatial resolution and activity recovery coefficient (RC) for small lesions or phantom structures. The presence of single photons (for (124)I and (89)Zr) could increase image noise and spillover ratios (SORs).

Methods: Image noise, expressed as percentage SD in a uniform region (%SD), RC, and SOR (in air and water) were determined using the NEMA NU 4 small-animal image-quality phantom filled with 3.7 MBq of total activity of (18)F, (68)Ga, (124)I, or (89)Zr. Filtered backprojection (FBP), ordered-subset expectation maximization in 2 dimensions, and maximum a posteriori (MAP) reconstructions were compared. In addition to the NEMA NU 4 image-quality parameters, spatial resolutions were determined using small glass capillaries filled with these radionuclides in a water environment.

Results: The %SD for (18)F, (68)Ga, (124)I, and (89)Zr using FBP was 6.27, 6.40, 6.74, and 5.83, respectively. The respective RCs were 0.21, 0.11, 0.12, and 0.19 for the 1-mm-diameter rod and 0.97, 0.65, 0.64, and 0.88 for the 5-mm-diameter rod. SORs in air were 0.01, 0.03, 0.04, and 0.01, respectively, and in water 0.02, 0.10, 0.13, and 0.02. Other reconstruction algorithms gave similar differences between the radionuclides. MAP produced the highest RCs. For the glass capillaries using FBP, the full widths at half maximum for (18)F, (68)Ga, (124)I, and (89)Zr were 1.81, 2.46, 2.38, and 1.99 mm, respectively. The corresponding full widths at tenth maximum were 3.57, 6.52, 5.87, and 4.01 mm.

Conclusion: With the intrinsic spatial resolution (approximately 1.5 mm) of this latest-generation small-animal PET scanner, the finite positron range has become the limiting factor for the overall spatial resolution and activity recovery in small structures imaged with (124)I and (68)Ga. The presence of single photons had only a limited effect on the image noise. MAP, as compared with the other reconstruction algorithms, increased RC and decreased %SD and SOR.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources