Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2010 Jul;51(7):3509-14.
doi: 10.1167/iovs.09-4786. Epub 2010 Mar 17.

The path to open-angle glaucoma gene discovery: endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness

Affiliations
Multicenter Study

The path to open-angle glaucoma gene discovery: endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness

Jac Charlesworth et al. Invest Ophthalmol Vis Sci. 2010 Jul.

Abstract

PURPOSE. Primary open-angle glaucoma (POAG) is a complex disease with a genetic architecture that can be simplified through the investigation of individual traits underlying disease risk. It has been well studied in twin models, and this study was undertaken to investigate the heritability of some of these key endophenotypes in extended pedigrees. METHODS. These data are derived from a large, multicenter study of extended, Caucasian POAG families from Australia and the United States. The study included 1181 people from 22 extended pedigrees. Variance components modeling was used to determine the heritabilities of maximum intraocular pressure (IOP), maximum vertical cup-to-disc ratio (VCDR), and mean central corneal thickness (CCT). Bivariate quantitative genetic analysis between these eye-related phenotypes and POAG itself was performed to determine whether any of these traits represent true endophenotypes. RESULTS. Heritability estimates for IOP, VCDR, and CCT (0.42, 0.66, and 0.72, respectively) were significant and show strong concordance with data in previous studies. Bivariate analysis revealed that both IOP (RhoG = 0.80; P = 9.6 x 10(-6)) and VCDR (RhoG = 0.76; P = 4.8 x 10(-10)) showed strong evidence of genetic correlation with POAG susceptibility. These two traits also correlated genetically with each other (RhoG = 0.45; P = 0.0012). Alternatively, CCT did not correlate genetically with risk of POAG. CONCLUSIONS. All the proposed POAG-related traits have genetic components. However, the significant genetic correlations observed between IOP, VCDR, and POAG itself suggest that they most likely represent true endophenotypes that could aid in the identification of genes underlying POAG susceptibility. CCT did not correlate genetically with disease and is unlikely to be a useful surrogate endophenotype for POAG.

PubMed Disclaimer

References

    1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262–267 - PMC - PubMed
    1. Weih LM, Nanjan M, McCarty CA, Taylor HR. Prevalence and predictors of open-angle glaucoma: results from the visual impairment project. Ophthalmology 2001;108:1966–1972 - PubMed
    1. Wolfs RC, Klaver CC, Ramrattan RS, van Duijn CM, Hofman A, de Jong PT. Genetic risk of primary open-angle glaucoma: population-based familial aggregation study. Arch Ophthalmol 1998;116:1640–1645 - PubMed
    1. Rosenthal AR, Perkins ES. Family studies in glaucoma. Br J Ophthalmol 1985;69:664–667 - PMC - PubMed
    1. McNaught AI, Allen JG, Healey DL, et al. Accuracy and implications of a reported family history of glaucoma: experience from the Glaucoma Inheritance Study in Tasmania. Arch Ophthalmol 2000;118:900–904 - PubMed

Publication types