Pharmacological manipulation of rhodopsin retinitis pigmentosa
- PMID: 20238031
- DOI: 10.1007/978-1-4419-1399-9_36
Pharmacological manipulation of rhodopsin retinitis pigmentosa
Abstract
Mutations in rhodopsin cause autosomal dominant retinitis pigmentosa. The majority of these mutations (class II) lead to protein misfolding. The misfolded protein is retained in the ER then retrotranslocated into the cytoplasm for degradation by the proteasome. If degradation fails, the protein can aggregate to form intracellular inclusions. In addition, the mutant rod opsin exerts a dominant negative effect on the wild-type protein. Here, we review these pathways and how different drug treatments can affect mutant rod opsin. Interestingly, drugs targeted at general protein stability (kosmotropes) or improving the cellular folding and degradation machinery (molecular chaperone inducers and autophagy induction) reduced P23H rod opsin aggregation and inclusion formation together with associated caspase activation and cell death, but did not enhance mutant protein processing or reduce the dominant negative effects. In contrast, pharmacological chaperones (retinoids) enhanced P23H folding and reduced the dominant negative effects, as well as reducing the other gains of function. Therefore, targeting the toxic gain of function did not require improved folding, whereas reducing the dominant negative effects required improved folding. These studies suggest that some forms of rhodopsin retinitis pigmentosa could be treated by targeting protein folding and/or reducing protein aggregation.
Similar articles
-
Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.Hum Mol Genet. 2008 Oct 1;17(19):3043-54. doi: 10.1093/hmg/ddn202. Epub 2008 Jul 17. Hum Mol Genet. 2008. PMID: 18635576
-
The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation.J Cell Sci. 2002 Jul 15;115(Pt 14):2907-18. doi: 10.1242/jcs.115.14.2907. J Cell Sci. 2002. PMID: 12082151
-
Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.J Mol Biol. 2010 Feb 5;395(5):1063-78. doi: 10.1016/j.jmb.2009.11.015. Epub 2009 Nov 11. J Mol Biol. 2010. PMID: 19913029
-
Targeting the Proteostasis Network in Rhodopsin Retinitis Pigmentosa.Adv Exp Med Biol. 2016;854:479-84. doi: 10.1007/978-3-319-17121-0_64. Adv Exp Med Biol. 2016. PMID: 26427449 Free PMC article. Review.
-
[Structural development study of a novel pharmacological chaperone for folding-defective rhodopsin mutants responsible for retinitis pigmentosa].Yakugaku Zasshi. 2011 Mar;131(3):325-34. doi: 10.1248/yakushi.131.325. Yakugaku Zasshi. 2011. PMID: 21372525 Review. Japanese.
Cited by
-
Chromenone derivatives as novel pharmacological chaperones for retinitis pigmentosa-linked rod opsin mutants.Hum Mol Genet. 2022 Oct 10;31(20):3439-3457. doi: 10.1093/hmg/ddac125. Hum Mol Genet. 2022. PMID: 35642742 Free PMC article.
-
Modulation of cellular signaling pathways in P23H rhodopsin photoreceptors.Cell Signal. 2014 Apr;26(4):665-672. doi: 10.1016/j.cellsig.2013.12.008. Epub 2013 Dec 27. Cell Signal. 2014. PMID: 24378535 Free PMC article.
-
Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa.Pharmacol Res. 2017 Jan;115:1-13. doi: 10.1016/j.phrs.2016.10.031. Epub 2016 Nov 9. Pharmacol Res. 2017. PMID: 27838510 Free PMC article.
-
Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa.Adv Exp Med Biol. 2022;1371:61-77. doi: 10.1007/5584_2021_682. Adv Exp Med Biol. 2022. PMID: 34962636 Review.
-
Explant cultures of Rpe65-/- mouse retina: a model to investigate cone opsin trafficking.Mol Vis. 2013 May 29;19:1149-57. Print 2013. Mol Vis. 2013. PMID: 23734084 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources