Convergence properties of a modified Hopfield-Tank model
- PMID: 2025662
- DOI: 10.1007/BF00199592
Convergence properties of a modified Hopfield-Tank model
Abstract
The neural network model of Hopfield and Tank applied to the Travelling Salesman Problem, has been analyzed in order to improve its convergence properties. A simple change of the parameter sets always allows to reach states corresponding to valid tours. Besides a more interesting modification has been presented by adding a new term to force expression. This modified model has a high value of convergence and it is able to find short tours. So, more confidence can be given to these type of models, and real applications could be performed.
Similar articles
-
On the stability of the Travelling Salesman Problem algorithm of Hopfield and Tank.Biol Cybern. 1988;58(1):63-70. doi: 10.1007/BF00363956. Biol Cybern. 1988. PMID: 3345321
-
An analogue approach to the travelling salesman problem using an elastic net method.Nature. 1987 Apr 16-22;326(6114):689-91. doi: 10.1038/326689a0. Nature. 1987. PMID: 3561510
-
Improving convergence and solution quality of Hopfield-type neural networks with augmented Lagrange multipliers.IEEE Trans Neural Netw. 1996;7(6):1507-16. doi: 10.1109/72.548179. IEEE Trans Neural Netw. 1996. PMID: 18263545
-
The co-adaptive neural network approach to the Euclidean Travelling Salesman Problem.Neural Netw. 2003 Dec;16(10):1499-525. doi: 10.1016/S0893-6080(03)00056-X. Neural Netw. 2003. PMID: 14622879 Review.
-
Implementation of the three-dimensional-pattern search problem on Hopfield-like neural networks.SAR QSAR Environ Res. 1993;1(2-3):97-114. doi: 10.1080/10629369308028822. SAR QSAR Environ Res. 1993. PMID: 8790627 Review.
Cited by
-
Beyond the Nobel prizes: towards new synergies between Computational Neuroscience and Artificial Intelligence.Biol Cybern. 2024 Dec 27;119(1):1. doi: 10.1007/s00422-024-01002-0. Biol Cybern. 2024. PMID: 39729111 No abstract available.
-
Generalization of learning by synchronous waves: from perceptual organization to invariant organization.Cogn Neurodyn. 2011 Jun;5(2):113-32. doi: 10.1007/s11571-010-9142-9. Epub 2010 Dec 10. Cogn Neurodyn. 2011. PMID: 22654985 Free PMC article.