Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;83(3):483-8.
doi: 10.1007/BF00229825.

The integration of haptically acquired size information in the programming of precision grip

Affiliations

The integration of haptically acquired size information in the programming of precision grip

A M Gordon et al. Exp Brain Res. 1991.

Abstract

Recent evidence for the use of visual cues in the programming of the precision grip has been given by Gordon et al. (1991). Visually invoked size-related information influenced the physical forces used to produce a lift, even when it was not consistent with other sensory information. In the present study, blind-folded subjects were required to feel the size of an object by haptic exploration prior to lifting it. Two boxes of equal weight and unequal size were used for the lift objects and were attached to an instrumented (grip) handle. Grip force and load force, their rates, and the vertical movement of the object were measured. Most subjects reported that the small box was heavier, which is consistent with size-weight illusion predictions. However, peak grip force, grip force rate, peak load force, and load force rate were greater for the large box when the boxes were randomly presented, but not when the same boxes were lifted consecutively. If subjects did not feel the box prior to a lift, these parameters were scaled in between those normally employed for the large and small box. Most subjects apparently programmed the parallel increase of the grip and load force during the loading phase as one force rate pulse. This represented a "target strategy" in which an internal neural representation of the objects weight determined the actual target parameter (i.e. just enough force required to overcome gravity). The other subjects exhibited a slower stepwise increase in grip and load force rate. The subjects choosing this "probing strategy" did not scale the force parameters differently for the two boxes.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Brain Res. 1978 May 12;146(2):269-77 - PubMed
    1. J Exp Psychol Hum Percept Perform. 1988 Nov;14(4):610-21 - PubMed
    1. Exp Brain Res. 1991;83(3):477-82 - PubMed
    1. Exp Brain Res. 1987;66(1):141-54 - PubMed
    1. Science. 1986 Jun 27;232(4758):1612-9 - PubMed

Publication types