Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May 15;266(14):8651-4.

Multiple tissue-specific elements control the apolipoprotein E/C-I gene locus in transgenic mice

Affiliations
  • PMID: 2026582
Free article

Multiple tissue-specific elements control the apolipoprotein E/C-I gene locus in transgenic mice

W S Simonet et al. J Biol Chem. .
Free article

Abstract

To investigate the mechanisms controlling tissue-specific expression of the human apolipoprotein (apo) E/C-I gene locus, human apoE and apoC-I gene constructs containing various lengths of the 5'-flanking or 3'-flanking region were used to create transgenic mice. Several essential tissue-specific regulatory elements were identified in the region between the apoE and the apoC-I genes, as well as in a distal domain found downstream of the apoC-I gene. Most notably, transcription of both the apoE and apoC-I genes in the liver, their major site of expression, required downstream regulatory elements, possibly located within a common regulatory domain more than 2 kilobases 3' of the apoC-I gene (about 14 kilobases downstream of the apoE gene promoter). In the region between the apoE and apoC-I genes, a single strong positive element directed apoE and apoC-I gene expression in the skin. The intergenic region also contained elements that stimulated apoE gene expression in the brain and silenced apoE gene expression only in the kidney. These results demonstrate that multiple independent regulatory elements control expression of the human apoE/C-I gene locus in various tissues. Transgenic mice expressing human apoC-I in the liver exhibited plasma triglyceride levels that were 2-3-fold higher than those in control mice, an effect not found when transgenic human apoE was produced. This result suggests that apoC-I may modulate the metabolism of triglyceride-rich lipoproteins.

PubMed Disclaimer

Publication types

LinkOut - more resources