Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May 15;266(14):8807-13.

Rat plasma fibronectin contains two distinct chemotactic domains for fibroblastic cells

Affiliations
  • PMID: 2026595
Free article

Rat plasma fibronectin contains two distinct chemotactic domains for fibroblastic cells

F Fukai et al. J Biol Chem. .
Free article

Abstract

Mechanism of fibronectin (FN)-induced chemotaxis of fibroblastic cells has not been fully understood. The present study was performed to establish a molecular nature of the chemotactic region of rat plasma FN. The chemotactic dose-response pattern of intact FN for mouse embryo fibroblastic cells, NIH-L13 cells, which was represented as a "bell-shape" curve with a maximum activity at around 50 nM, changed to a "biphasic" mode through a proteolysis with thermolysin. Two distinct chemotactic components were isolated from the thermolytic fragments. One component, a fragment with a molecular mass of 110-150 kDa, was estimated to contain the central cell-binding domain and the carboxyl-terminal heparin-binding domain of the intact FN molecule. Cell migration stimulated by the 110-150-kDa fragment increased successively in a dose-dependent manner, and the capability to promote the migration was much higher than that of the intact FN (over 2-fold). The second chemotactic component, a fragment with a molecular mass of 21 kDa, was shown to reside in the carboxyl-terminal fibrin-binding domain. The 21-kDa fragment produced a bell-shape dose-response pattern, being consistent with the intact FN, whereas a maximum response occurred at a 100-fold lower concentration (0.5 nM) than that of the intact FN molecule. At higher concentrations, this fragment revealed an inhibitory activity for the cell migration in response to the 110-150-kDa fragment. No significant molecular interaction between these two active components was observed by polyacrylamide gel electrophoresis under nondenaturing conditions, suggesting that the 21-kDa fragment may act directly on the cell to inhibit the cell migration. These results suggest that rat plasma FN contains at least two chemotactically active components that regulate cooperatively chemotactic migration of fibroblastic cells.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources