Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May;11(5):1440-57.
doi: 10.1523/JNEUROSCI.11-05-01440.1991.

Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells

Affiliations

Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells

P R Montague et al. J Neurosci. 1991 May.

Abstract

Identified retinal ganglion cells were isolated from postnatal cat retinas and their dendrites were removed by trituration and centrifugation. The denuded cells were placed in a cell culture system and allowed to reexpress dendritic arbors in the absence of afferent input, target tissue, and interactions with neighboring ganglion cells. The retinal ganglion cells were grown above a feeder layer of astrocytes on glass coverslips equipped with paraffin pedestals. The spatial patterns of the reexpressed neurites were quantitatively analyzed using a number of measures, including an estimate of the Hausdorff dimension, H, which was used as a scale-independent metric for how well the neurite patterns filled in a restricted spatial domain. As assessed by the estimation of the Hausdorff dimensions, the neurites from a single cell achieve uniform coverage of a restricted territory independent of the total neurite length or the total number of inter-branch-point segments. A comparison with H values of ganglion cells from the intact retina revealed a similar trend. These results suggest that these cultured ganglion cells can express an intrinsic growth strategy for the uniform coverage of a restricted territory. The arbors expressed in the culture system displayed a limited range of diameters and exhibited morphology similar to the alpha-, beta-, and gamma-ganglion cells of the intact retina in the absence of afferent input or the influences of neighboring cells and target tissue. Time-lapse video data revealed that individual cultured cells showed extensive dendritic remodeling during their growth; however, after about 3 d in culture, this remodeling did not appreciably affect the territorial coverage of a cell. In the intact retina, the existence of dendritic sheets that independently and uniformly sample visual space may result from this intrinsic ability to elaborate dendrites that uniformly cover or fill in a restricted territory.

PubMed Disclaimer

Publication types