Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr 3;1082(3):239-46.
doi: 10.1016/0005-2760(91)90198-q.

Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity

Affiliations

Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity

E Fehling et al. Biochim Biophys Acta. .

Abstract

A particulate fraction (15,000 x g pellet) from developing seeds of honesty (Lunaria annua) was found to synthesize very-long-chain acyl-CoA thioesters in a manner similar to mammalian systems, i.e., via condensation of an acyl-CoA with malonyl-CoA yielding beta-ketoacyl-CoA, which is reduced to beta-hydroxyacyl-CoA, the latter dehydrated to trans-2-enoyl-CoA that is finally reduced to very-long-chain acyl-CoA. Reduced pyridine nucleotides (NADH/NADPH) are required for the reduction steps. In the absence of reduced pyridine nucleotides only the condensation reaction occurs. The acyl-CoA elongase does not exhibit any pronounced specificity for any of the saturated (14:0 to 20:0) or (n - 9)cis-monounsaturated (14:1 to 22:1) acyl-CoA substrates, although both the saturated and monounsaturated acyl-CoA substrates having chain lengths of C18 and C20 are elongated somewhat faster.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources