Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;186(3):623-35.
doi: 10.1111/j.1469-8137.2010.03206.x. Epub 2010 Mar 8.

Callose implication in stomatal opening and closure in the fern Asplenium nidus

Affiliations
Free article

Callose implication in stomatal opening and closure in the fern Asplenium nidus

P Apostolakos et al. New Phytol. 2010 May.
Free article

Abstract

The involvement of callose in the mechanism of stomatal pore opening and closing in the fern Asplenium nidus was investigated by examination of the pattern of callose deposition in open and closed stomata, and by examination of the effects of callose degradation and inhibition or induction of callose synthesis in stomatal movement. Callose was identified with aniline blue staining and a callose antibody and degraded via beta-1,3-D-glucanase. Callose synthesis was inhibited with 2-deoxy-D-glucose and induced by coumarin or dichlobenil. Stomatal pore opening and closing were assessed by estimation of the stomatal pore width. The open stomata entirely lacked callose, while the closed ones displayed distinct radial fibrillar callose arrays in the external periclinal walls. The latter displayed local bending at the region of callose deposition, a deformation that was absent in the open stomata. Both callose degradation and inhibition of callose synthesis reduced the stomatal ability to open in white light and close in darkness. By contrast, callose synthesis induction considerably improved stomatal pore opening and reduced stomatal closure in same conditions. The present data revealed that: during stomatal closure the external periclinal guard cell walls experience a strong mechanical stress, probably triggering callose synthesis; and that callose participates in stomatal movement.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources