21-Hydroxylase-Deficient Congenital Adrenal Hyperplasia
- PMID: 20301350
- Bookshelf ID: NBK1171
21-Hydroxylase-Deficient Congenital Adrenal Hyperplasia
Excerpt
Clinical characteristics: 21-hydroxylase deficiency (21-OHD) is the most common cause of congenital adrenal hyperplasia (CAH), a family of autosomal recessive disorders involving impaired synthesis of cortisol from cholesterol by the adrenal cortex. In 21-OHD CAH, excessive adrenal androgen biosynthesis results in virilization in all individuals and salt wasting in some individuals. A classic form with severe enzyme deficiency and prenatal onset of virilization is distinguished from a non-classic form with mild enzyme deficiency and postnatal onset. The classic form is further divided into the simple virilizing form (~25% of affected individuals) and the salt-wasting form, in which aldosterone production is inadequate (≥75% of individuals). Newborns with salt-wasting 21-OHD CAH are at risk for life-threatening salt-wasting crises. Individuals with the non-classic form of 21-OHD CAH present postnatally with signs of hyperandrogenism; females with the non-classic form are not virilized at birth.
Diagnosis/testing: The diagnosis of classic 21-OHD CAH is established in newborns with characteristic clinical features, elevated serum 17-OHP, and elevated adrenal androgens. The diagnosis of non-classic 21-OHD is established by comparison of baseline serum 17-OHP and ACTH-stimulated serum 17-OHP or early morning elevated 17-OHP. Identification of biallelic pathogenic variants in CYP21A2 confirms the clinical diagnosis and allows for family studies.
Management: Treatment of manifestations: Classic 21-OHD CAH: glucocorticoid replacement therapy, which needs to be increased during periods of stress. Salt-wasting form: mineralocorticoid 9α-fludrohydrocortisone therapy and often sodium chloride. Females who are virilized at birth may require feminizing genitoplasty and/or vaginal dilation. Symptomatic individuals with non-classic 21-OHD CAH may require treatment.
Prevention of primary manifestations: Newborn screening programs aim to identify infants with classic 21-OHD CAH in order to initiate glucocorticoid and mineralocorticoid treatment prior to a potentially life-threatening salt-wasting crisis.
Surveillance: Monitor:
Efficacy of glucocorticoid and mineralocorticoid replacement therapy every three to four months while children are actively growing, and less often thereafter;
For testicular adrenal rest tumors in males every three to five years after onset of puberty;
Weight, bone mineral density, fertility, cardiovascular and metabolic risks in adults.
Evaluation of relatives at risk: It is appropriate to measure 17-hydroxyprogesterone (17-OHP) of at-risk sibs to facilitate early diagnosis and treatment.
Genetic counseling: 21-OHD CAH is inherited in an autosomal recessive manner. Most parents are heterozygous for a pathogenic variant. Approximately 1% of pathogenic variants are de novo; thus, 1% of probands have only one parent who is heterozygous. In some instances during evaluation of a proband, a parent not previously known to be affected may be found to have biallelic pathogenic variants and the non-classic form of 21-OHD CAH. At conception, if the parents of a proband are both known to be heterozygotes, each sib has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Carrier testing for at-risk relatives and prenatal testing for a pregnancy at increased risk are possible if the pathogenic variants in the family are known.
Copyright © 1993-2025, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.
Sections
References
-
- Arlt W, Willis DS, Wild SH, Krone N, Doherty EJ, Hahner S, Han TS, Carroll PV,Conway GS, Rees DA, Stimson RH, Walker BR, Connell JM, Ross RJ; United Kingdom Congenital Adrenal Hyperplasia Adult Study Executive (CaHASE). Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients. J Clin Endocrinol Metab. 2010;95:5110-21.
-
- Auchus RJ, Witchel SF, Leight KR, Aisenberg J, Azziz R, Bachega TA, Baker LA, Baratz AB, Baskin LS, Berenbaum SA, Breault DT, Cerame BI, Conway GS, Eugster EA, Fracassa S, Gearhart JP, Geffner ME, Harris KB, Hurwitz RS, Katz AL, Kalro BN, Lee PA, Alger Lin G, Loechner KJ, Marshall I, Merke DP, Migeon CJ, Miller WL, Nenadovich TL, Oberfield SE, Pass KA, Poppas DP, Lloyd-Puryear MA, Quigley CA, Riepe FG, Rink RC, Rivkees SA, Sandberg DE, Schaeffer TL, Schlussel RN, Schneck FX, Seely EW, Snyder D, Speiser PW, Therrell BL, Vanryzin C, Vogiatzi MG, Wajnrajch MP, White PC, Zuckerman AE. Guidelines for the development of comprehensive care centers for congenital adrenal hyperplasia: guidance from the CARES Foundation Initiative. Int J Pediatr Endocrinol. 2010;2010:275213. - PMC - PubMed
-
- Bachelot A, Chakthoura Z, Rouxel A, Dulon J, Touraine P (2008) Classical forms of congenital adrenal hyperplasia due to 21-hydroxylase deficiency in adults. Horm Res 69:203-11 - PubMed
-
- Burch GH, Gong Y, Liu W, Dettman RW, Curry CJ, Smith L, Miller WL, Bristow J (1997) Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat Genet 17:104–8 - PubMed
-
- Chan CL, McFann K, Taylor L, Wright D, Zeitler PS, Barker JM. Congenital adrenal hyperplasia and the second newborn screen. J Pediatr. 2013;163:109-13.e1. - PubMed
Publication types
LinkOut - more resources
Full Text Sources