Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Disorders of Intracellular Cobalamin Metabolism

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

Disorders of Intracellular Cobalamin Metabolism

Jennifer L Sloan et al.
Free Books & Documents

Excerpt

Clinical characteristics: Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range:

  1. In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction

  2. Newborns, who can have microcephaly, poor feeding, and encephalopathy

  3. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS)

  4. Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures

  5. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord

Diagnosis/testing: The diagnosis of a disorder of intracellular cobalamin metabolism in a symptomatic individual is based on clinical, biochemical, and molecular genetic data. Evaluation of the methylmalonic acid (MMA) level in urine and blood and plasma total homocysteine (tHcy) level are the mainstays of biochemical testing. Diagnosis is confirmed by identification of biallelic pathogenic variants in one of the following genes (associated complementation groups indicated in parentheses): MMACHC (cblC), MMADHC (cblD-combined and cblD-homocystinuria), MTRR (cblE), LMBRD1 (cblF), MTR (cblG), ABCD4 (cblJ), THAP11(cblX-like), ZNF143(cblX-like), or a hemizygous variant in HCFC1 (cblX, which can show a cblC complementation class).

Management: Treatment of manifestations: Critically ill individuals must be stabilized, preferably in consultation with a metabolic specialist, by treating acidosis, reversing catabolism, and initiating parenteral hydroxocobalamin. Treatment of thromboembolic complications (e.g., HUS and thrombotic microangiopathy) includes initiation of hydroxocobalamin (OHCbl) and betaine or an increase in their doses. Long-term management focuses on improving the metabolic derangement by lowering plasma tHcy and MMA concentrations and maintaining plasma methionine concentrations within the normal range. Gastrostomy tube placement for feeding may be required; infantile spasms, seizures, congenital heart malformations, and hydrocephalus are treated using standard protocols.

Prevention of primary manifestations: Early institution of injectable hydroxocobalamin improves survival and may reduce but not completely prevent primary manifestations. To prevent metabolic decompensations, affected persons are advised to avoid situations that result in catabolism, such as prolonged fasting and dehydration, and always remain on a weight-appropriate dose of hydroxocobalamin.

Surveillance: During the first year of life, infants may need to be evaluated once or twice a month by a metabolic specialist to assess growth, nutritional status, feeding ability, and developmental and neurocognitive progress. Toddlers and school-age children should be evaluated at least twice a year to adjust medication dosing (hydroxocobalamin, betaine) during growth and evaluate nutritional status. Teens and adults may be seen on a yearly basis. Routine ophthalmologic, neurologic, and cardiac evaluations may also be appropriate.

Agents/circumstances to avoid: Prolonged fasting (longer than overnight without dextrose-containing intravenous fluids); dietary protein intake below the recommended dietary allowance for age or more than that prescribed by a metabolic specialist; methionine restriction including use of medical foods that do not contain methionine; and the anesthetic nitrous oxide.

Evaluation of relatives at risk: If the pathogenic variants in the family are known, at-risk sibs may be tested prenatally to allow initiation of treatment in utero or as soon as possible after birth.

If the newborn sib of an affected individual has not undergone prenatal testing, molecular genetic testing can be performed in the first week of life if the pathogenic variants in the family are known. Otherwise, evaluation of urine organic acids and plasma amino acids, measurement of total plasma homocysteine, serum methylmalonic acid analysis, and acylcarnitine profile analysis can be used for the purpose of early diagnosis and treatment.

Genetic counseling: The majority of disorders of intracellular cobalamin metabolism are inherited in an autosomal recessive manner. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. The disorder of intracellular cobalamin metabolism caused by pathogenic variants in HCFC1 is inherited in an X-linked manner. The risk to sibs depends on the genetic status of the mother. If the mother of the proband has an HCFC1 pathogenic variant, the chance of transmitting it in each pregnancy is 50%. Males who inherit the pathogenic variant will be affected. Females who inherit the pathogenic variant will be heterozygous and will usually not be affected (no affected females have been described to date).

Once the pathogenic variant(s) have been identified in an affected family member, carrier testing for at-risk relatives, molecular genetic prenatal testing for a pregnancy at increased risk, and preimplantation genetic testing are possible.

PubMed Disclaimer

Similar articles

  • Isolated Methylmalonic Acidemia.
    Manoli I, Sloan JL, Venditti CP. Manoli I, et al. 2005 Aug 16 [updated 2022 Sep 8]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2005 Aug 16 [updated 2022 Sep 8]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301409 Free Books & Documents. Review.
  • PTS-Related Tetrahydrobiopterin Deficiency (PTPSD).
    Opladen T, Longo N, Blau N. Opladen T, et al. 2025 Jul 10. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2025 Jul 10. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 40638773 Free Books & Documents. Review.
  • Citrullinemia Type I.
    Quinonez SC, Lee KN. Quinonez SC, et al. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301631 Free Books & Documents. Review.
  • Propionic Acidemia.
    Galarreta Aima CI, Shchelochkov OA, Jerves Serrano T, Venditti CP. Galarreta Aima CI, et al. 2012 May 17 [updated 2024 Sep 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2012 May 17 [updated 2024 Sep 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 22593918 Free Books & Documents. Review.
  • Ornithine Transcarbamylase Deficiency.
    Lichter-Konecki U, Caldovic L, Morizono H, Simpson K, Ah Mew N, MacLeod E. Lichter-Konecki U, et al. 2013 Aug 29 [updated 2022 May 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2013 Aug 29 [updated 2022 May 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 24006547 Free Books & Documents. Review.

References

    1. Abels J, Kroes AC, Ermens AA, van Kapel J, Schoester M, Spijkers LJ, Lindemans J. Anti-leukemic potential of methyl-cobalamin inactivation by nitrous oxide. Am J Hematol. 1990;34:128-31. - PubMed
    1. Ahrens-Nicklas RC, Serdaroglu E, Muraresku C, Ficicioglu C (2015) Cobalamin C disease missed by newborn screening in a patient with low carnitine level. JIMD Rep 23:71-75. - PMC - PubMed
    1. Ahrens-Nicklas RC, Whitaker AM, Kaplan P, Cuddapah S, Burfield J, Blair J, Brochi L, Yudkoff M, Ficicioglu C (2017) Efficacy of early treatment in patients with cobalamin C disease identified by newborn screening: a 16-year experience. Genet Med. 19:926-35. - PMC - PubMed
    1. Alfadhel M, Lillquist YP, Davis C, Junker AK, Stockler-Ipsiroglu S. Eighteen-year follow-up of a patient with cobalamin F disease (cblF): report and review. Am J Med Genet A. 2011;155A:2571-7 - PubMed
    1. Alfares A, Nunez LD, Al-Thihli K, Mitchell J, Melançon S, Anastasio N, Ha KC, Majewski J, Rosenblatt DS, Braverman N. Combined malonic and methylmalonic aciduria: exome sequencing reveals mutations in the ACSF3 gene in patients with a non-classic phenotype. J Med Genet 2011; 48: 602-5 - PubMed

LinkOut - more resources