Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Thanatophoric Dysplasia

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

Thanatophoric Dysplasia

Tegan French et al.
Free Books & Documents

Excerpt

Clinical characteristics: Thanatophoric dysplasia (TD) is a short-limb skeletal dysplasia that is usually lethal in the perinatal period. TD is divided into subtypes: TD type 1 is characterized by micromelia with bowed femurs and, uncommonly, the presence of craniosynostosis of varying severity. TD type 2 is characterized by micromelia with straight femurs and uniform presence of moderate-to-severe craniosynostosis with cloverleaf skull deformity. Other features common to type 1 and type 2 include: short ribs, narrow thorax, relative macrocephaly, distinctive facial features, brachydactyly, hypotonia, and redundant skin folds along the limbs. Most affected infants die of respiratory insufficiency shortly after birth. Rare long-term survivors have been reported.

Diagnosis/testing: The diagnosis of TD is established in a proband with characteristic clinical and/or radiologic features and/or a heterozygous pathogenic variant in FGFR3 identified on molecular genetic testing.

Management: Treatment of manifestations: Most individuals with TD die in the perinatal period because of the multisystem complications of the disorder. Management goals should be established with the family and may focus on provision of comfort care. Newborns require long-term respiratory support (typically with tracheostomy and ventilation) to survive. Anesthetic management guidelines for skeletal dysplasias are applicable to individuals with TD. Other treatment measures may include shunt placement for hydrocephalus, suboccipital decompression for relief of craniocervical junction constriction, anti-seizure medication to control seizures, and hearing aids.

Surveillance: Long-term survivors need neuroimaging to monitor for craniocervical constriction, assessment of neurologic status, and EEG to monitor for seizure activity, as well as developmental, orthopedic, and audiology evaluations.

Pregnancy management: When TD is diagnosed prenatally, treatment goals are to avoid potential pregnancy complications including prematurity, polyhydramnios, malpresentation, and delivery complications from macrocephaly and/or a flexed and rigid neck; cephalocentesis and cesarean section may be considered to avoid maternal complications.

Genetic counseling: TD is inherited in an autosomal dominant manner; the majority of probands have a de novo FGFR3 pathogenic variant. Risk of sib recurrence for parents who have had one affected child is not significantly increased over that of the general population. Germline mosaicism in healthy parents, although not reported to date, remains a theoretic possibility. Prenatal diagnosis is possible by ultrasound examination and molecular genetic testing.

PubMed Disclaimer

References

    1. Baitner AC, Maurer SG, Gruen MB, Di Cesare PE. The genetic basis of the osteochondrodysplasias. J Pediatr Orthop. 2000;20:594–605. - PubMed
    1. Baker KM, Olson DS, Harding CO, Pauli RM. Long-term survival in typical thanatophoric dysplasia type 1. Am J Med Genet. 1997;70:427–36. - PubMed
    1. Barbosa-Buck CO, Orioli IM, Dutra MG, Lopez-Camelo J, Castilla EE, Cavalcanti DP. Clinical epidemiology of skeletal dysplasias in South America. Am J Med Genet Part A. 2012;158A:1038–45. - PubMed
    1. Bellus GA, Bamshad MJ, Przylepa KA, Dorst J, Lee RR, Hurko O, Jabs EW, Curry CJ, Wilcox WR, Lachman RS, Rimoin DL, Francomano CA. Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN): phenotypic analysis of a new skeletal dysplasia caused by a Lys650Met mutation in fibroblast growth factor receptor 3. Am J Med Genet. 1999;85:53–65. - PubMed
    1. Bellus GA, Spector EB, Speiser PW, Weaver CA, Garber AT, Bryke CR, Israel J, Rosengren SS, Webster MK, Donoghue DJ, Francomano CA. Distinct missense mutations of the FGFR3 lys650 codon modulate receptor kinase activation and the severity of the skeletal dysplasia phenotype. Am J Hum Genet. 2000;67:1411–21. - PMC - PubMed