Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Permanent Neonatal Diabetes Mellitus

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

Permanent Neonatal Diabetes Mellitus

Diva D De León et al.
Free Books & Documents

Excerpt

Clinical characteristics: Permanent neonatal diabetes mellitus (PNDM) is characterized by the onset of hyperglycemia within the first six months of life (mean age: 7 weeks; range: birth to age 26 weeks). The diabetes mellitus is associated with partial or complete insulin deficiency. Clinical manifestations at the time of diagnosis include hyperglycemia, glycosuria, osmotic polyuria, severe dehydration, and history of intrauterine growth deficiency. Therapy with insulin and/or oral hypoglycemic medications (in some molecular causes of PNDM) can correct the hyperglycemia and result in dramatic catch-up growth. The course of PNDM varies by genotype.

Diagnosis/testing: The diagnosis of PNDM is established in an infant with diabetes mellitus diagnosed in the first six months of life that does not resolve over time. Molecular genetic testing is recommended, as identification of a specific molecular cause of PNMD can guide treatment.

Management: Targeted therapy: Oral sulfonylureas after initial management with insulin in those with ABCC8- or KCNJ11-related PNDM.

Supportive care: Rehydration and intravenous insulin infusion promptly after diagnosis; subcutaneous insulin therapy when the infant is stable and tolerating oral feedings; high caloric diet to achieve weight gain; developmental and educational support in those with KCNJ11-, MNX1-, NEUROD1-, or NKX2-2-related PNDM; anti-seizure medication as needed in those with DEND syndrome (developmental delay, epilepsy, and neonatal diabetes mellitus); pancreatic enzyme replacement therapy in those with exocrine pancreatic insufficiency.

Surveillance: Frequent blood glucose monitoring; urinalysis for microalbuminuria and cystatin C measurement annually beginning at age ten years to screen for kidney manifestations of persistent hyperglycemia; ophthalmologic examination for retinopathy annually beginning at age ten years; developmental evaluation annually or as needed in those with KCNJ11-, MNX1-, NEUROD1-, or NKX2-2-related PNDM; neurology evaluation and EEG in those with KCNJ11-related DEND syndrome; evaluation of pancreatic exocrine function in those with symptoms of malabsorption; serum concentrations of fat-soluble vitamins every six months in those with known exocrine pancreatic insufficiency.

Agents/circumstances to avoid: In general, avoid rapid-acting insulin preparations (lispro and aspart) as well as short-acting (regular) insulin preparations (except as a continuous intravenous or subcutaneous infusion), as they may cause severe hypoglycemia in young children.

Evaluation of relatives at risk: Evaluate apparently asymptomatic older and younger at-risk relatives of an affected individual in order to identify as early as possible those who would benefit from surveillance and treatment of hyperglycemia.

Pregnancy management: Pregnant women with PNDM should be managed by an endocrinologist and maternal-fetal medicine specialist; high-resolution ultrasonography and fetal echocardiography should be offered during pregnancy to screen for congenital anomalies in the fetus.

Genetic counseling: The mode of inheritance of PNDM varies by gene: ABCC8- and INS-related PNDM are inherited in an autosomal dominant or an autosomal recessive manner; GATA6-, HNF1B-, and KCNJ11-related PNDM are inherited in an autosomal dominant manner; EIF2AK3-, GCK-, GLIS3-, MNX1-, NEUROD1-, NKX2-2-, PDX1-, PTF1A-, RFX6-, SLC2A2-, and SLC19A2-related PNDM are inherited in an autosomal recessive manner.

Autosomal dominant inheritance: The majority of individuals with autosomal dominant PNDM caused by a heterozygous pathogenic variant in ABCC8, INS, or KCNJ11 have the disorder as the result of a de novo pathogenic variant. Each child of an individual with PNDM inherited in an autosomal dominant manner has a 50% chance of inheriting the PNDM-related pathogenic variant.

Autosomal recessive inheritance: The parents of an individual with PNDM caused by biallelic pathogenic variants are presumed to be heterozygous for a PNDM-related pathogenic variant. The heterozygous parents of a child with autosomal recessive PNDM may or may not have diabetes mellitus. If both parents are known to be heterozygous for a PNDM-related pathogenic variant, each sib of an affected individual has at conception a 25% chance of being affected, a 50% chance of being heterozygous, and a 25% chance of inheriting neither of the familial pathogenic variants. The heterozygous sibs of a proband with autosomal recessive PNDM may or may not have diabetes mellitus. Heterozygote testing for at-risk relatives requires prior identification of the PNDM-related pathogenic variants in the family.

Once the PNDM-related pathogenic variant(s) have been identified in an affected family member, prenatal and preimplantation genetic testing for PNDM are possible.

PubMed Disclaimer

Similar articles

  • Dystrophic Epidermolysis Bullosa.
    Lucky AW, Pope E, Crawford S. Lucky AW, et al. 2006 Aug 21 [updated 2025 Aug 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2006 Aug 21 [updated 2025 Aug 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301481 Free Books & Documents. Review.
  • Cystinosis.
    Gahl WA. Gahl WA. 2001 Mar 22 [updated 2025 Aug 14]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2001 Mar 22 [updated 2025 Aug 14]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301574 Free Books & Documents. Review.
  • PTS-Related Tetrahydrobiopterin Deficiency (PTPSD).
    Opladen T, Longo N, Blau N. Opladen T, et al. 2025 Jul 10. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2025 Jul 10. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 40638773 Free Books & Documents. Review.
  • Shwachman-Diamond Syndrome.
    Nelson A, Myers K. Nelson A, et al. 2008 Jul 17 [updated 2024 Sep 19]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2008 Jul 17 [updated 2024 Sep 19]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301722 Free Books & Documents. Review.
  • Familial Hypercholesterolemia.
    Ison HE, Clarke SL, Knowles JW. Ison HE, et al. 2014 Jan 2 [updated 2025 Jan 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2014 Jan 2 [updated 2025 Jan 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 24404629 Free Books & Documents. Review.

References

    1. Aly HH, De Franco E, Flanagan SE, Elhenawy YI. MNX1 mutations causing neonatal diabetes: Review of the literature and report of a case with extra-pancreatic congenital defects presenting in severe diabetic ketoacidosis. J Diabetes Investig. 2023;14:516-21. - PMC - PubMed
    1. American Diabetes Association Professional Practice Committee. 14. children and adolescents: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S208-S231. - PubMed
    1. Ashcroft FM. KATP channels and the metabolic regulation of insulin secretion in health and disease: the 2022 Banting Medal for Scientific Achievement Award Lecture. Diabetes. 2023;72:693-702. - PMC - PubMed
    1. Auerbach A, Cohen A, Ofek Shlomai N, Weinberg-Shukron A, Gulsuner S, King MC, Hemi R, Levy-Lahad E, Abulibdeh A, Zangen D. NKX2-2 mutation causes congenital diabetes and infantile obesity with paradoxical glucose-induced ghrelin secretion. J Clin Endocrinol Metab. 2020;105:dgaa563. - PubMed
    1. Babenko AP, Polak M, Cave H, Busiah K, Czernichow P, Scharfmann R, Bryan J, Aguilar-Bryan L, Vaxillaire M, Froguel P. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med. 2006;355:456–66. - PubMed

LinkOut - more resources