OST-HTH: a novel predicted RNA-binding domain
- PMID: 20302647
- PMCID: PMC2848206
- DOI: 10.1186/1745-6150-5-13
OST-HTH: a novel predicted RNA-binding domain
Abstract
Background: The mechanism by which the arthropod Oskar and vertebrate TDRD5/TDRD7 proteins nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. Using sequence profile searches we identify a novel domain in these proteins that is widely conserved across eukaryotes and bacteria.
Results: Using contextual information from domain architectures, sequence-structure superpositions and available functional information we predict that this domain is likely to adopt the winged helix-turn-helix fold and bind RNA with a potential specificity for dsRNA. We show that in eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures.
Conclusions: Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized domain (DUF88). We present evidence that it is an RNAse belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains and might be recruited to degrade certain RNAs.
Figures
References
-
- Zhang D, Xiong H, Shan J, Xia X, Trudeau VL. Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3'-5' exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch. Biol Direct. 2008;3:48. doi: 10.1186/1745-6150-3-48. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
