Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009:180:72-96.
doi: 10.1016/S0079-6123(08)80004-0. Epub 2009 Dec 8.

Chapter 4 - Applications of nanotechnology in molecular imaging of the brain

Affiliations
Review

Chapter 4 - Applications of nanotechnology in molecular imaging of the brain

Martina A McAteer et al. Prog Brain Res. 2009.

Abstract

Rapid advances in the field of nanotechnology promise revolutionary improvements in the diagnosis and therapy of neuroinflammatory disorders. An array of iron oxide nano- and microparticle agents have been developed for in vivo molecular magnetic resonance imaging (mMRI) of cerebrovascular endothelial targets, such as vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and the glycoprotein receptor GP IIb/IIIa expressed on activated platelets. Molecular markers of glioma cells, such as matrix metalloproteinase-2 (MMP-2), and markers for brain tumor angiogenesis, such as alpha (v) beta (3) integrin (alpha(v)beta(3)), have also been successfully targeted using nanoparticle imaging probes. This chapter provides an overview of targeted, iron oxide nano- and microparticles that have been applied for in vivo mMRI of the brain in experimental models of multiple sclerosis (MS), brain ischemia, cerebral malaria (CM), brain cancer, and Alzheimer's disease. The potential of targeted nanoparticle agents for application in clinical imaging is also discussed, including multimodal and therapeutic approaches.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources