Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;224(1):188-96.
doi: 10.1016/j.expneurol.2010.03.009. Epub 2010 Mar 18.

Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats

Affiliations
Free article

Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats

Paula Pierozan et al. Exp Neurol. 2010 Jul.
Free article

Abstract

In the present study we investigated the effect of in vivo intrastriatal injection of quinolinic acid (QA) on cytoskeletal proteins in astrocytes and neurons of young rats at early stage (30 min) after infusion. QA (150 nmoles/0.5 microL) significantly increased the in vitro phosphorylation of the low molecular weight neurofilament subunit (NFL) and the glial fibrillary acidic protein (GFAP) of neurons and astrocytes, respectively. This effect was mediated by cAMP-dependent protein kinase A (PKA), protein kinase C (PKC) and Ca(2+)/calmodulin-dependent protein kinase II (PKCaMII). In contrast, mitogen activated protein kinases were not activated by QA infusion. Furthermore, the specific N-methyl-D-aspartate (NMDA) antagonist MK-801 (0.25 mg/kg i.p), the antioxidant L-NAME (60 mg\kg\day), and diphenyldisselenide (PheSe)(2) (0.625 mg\kg\day) injected prior to QA infusion totally prevented QA-induced cytoskeletal hyperphosphorylation. We also observed that QA-induced hyperphosphorylation was targeted at the Ser55 phosphorylating site on NFL head domain, described as a regulatory site for NF assembly in vivo. This effect was fully prevented by MK801, by the PKA inhibitor H89 and by (PheSe)(2), whereas staurosporine (PKC inhibitor) only partially prevented Ser55 phosphorylation. The PKCaMII inhibitor (KN93) and the antioxidant L-NAME failed to prevent the hyperphosphorylation of Ser55 by QA infusion. Therefore, we presume that QA-elicited hyperphosphorylation of the neural cytoskeleton, and specially of NFLSer55, achieved by intrastriatal QA injection could represent an early step in the pathophysiological cascade of deleterious events exerted by QA in rat striatum. Our observations also indicate that NMDA-mediated Ca(2+) events and oxidative stress may be related to the altered protein cytoskeleton hyperphosphorylation observed with important implications for brain function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources