Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels
- PMID: 20303371
- PMCID: PMC2900484
- DOI: 10.1016/j.appet.2010.03.009
Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels
Abstract
Consumption of sugar-sweetened beverages may be one of the dietary causes of metabolic disorders, such as obesity. Therefore, substituting sugar with low calorie sweeteners may be an efficacious weight management strategy. We tested the effect of preloads containing stevia, aspartame, or sucrose on food intake, satiety, and postprandial glucose and insulin levels.
Design: 19 healthy lean (BMI=20.0-24.9) and 12 obese (BMI=30.0-39.9) individuals 18-50 years old completed three separate food test days during which they received preloads containing stevia (290kcal), aspartame (290kcal), or sucrose (493kcal) before the lunch and dinner meal. The preload order was balanced, and food intake (kcal) was directly calculated. Hunger and satiety levels were reported before and after meals, and every hour throughout the afternoon. Participants provided blood samples immediately before and 20min after the lunch preload. Despite the caloric difference in preloads (290kcal vs. 493kcal), participants did not compensate by eating more at their lunch and dinner meals when they consumed stevia and aspartame versus sucrose in preloads (mean differences in food intake over entire day between sucrose and stevia=301kcal, p<.01; aspartame=330kcal, p<.01). Self-reported hunger and satiety levels did not differ by condition. Stevia preloads significantly reduced postprandial glucose levels compared to sucrose preloads (p<.01), and postprandial insulin levels compared to both aspartame and sucrose preloads (p<.05). When consuming stevia and aspartame preloads, participants did not compensate by eating more at either their lunch or dinner meal and reported similar levels of satiety compared to when they consumed the higher calorie sucrose preload.
Published by Elsevier Ltd.
Conflict of interest statement
Disclosure
The authors have no conflicts of interest to disclose.
Figures




References
-
- Barriocanal LA, Palacios M, Benitez G, Benitez S, Jimenez JT, Jimenez N, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmaco. 2008;51:37–41. - PubMed
-
- Barros CM, Lessa RQ, Grechi MP, Mouco TL, Souza MG, Wiernsperger N, et al. Substitution of drinking water by fructose solution induces hyperinsulinemia and hyperglycemia in hamsters. Clinics. 2007;62:327–334. - PubMed
-
- Beck AT, Steer RA, Brown GK. Beck Depression Invenstory-II. San Antonio: Psychological Corporation; 1996.
-
- Blundell JE, Hill AJ. Paradoxical effects of an intense sweetener (aspartame) on appetite. Lancet. 1986;1:1092–1093. - PubMed
-
- Chang JC, Wu MC, Liu IM, Cheng JT. Increase of insulin sensitivity by stevioside in fructose-rich chow-fed rats. Horm Metab Res. 2005;37:610–616. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical