Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;20(3):324-9.
doi: 10.1016/j.gde.2010.02.008. Epub 2010 Mar 19.

Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree?

Affiliations
Review

Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree?

Jean-Pierre Bayley et al. Curr Opin Genet Dev. 2010 Jun.

Abstract

The past decade has seen a revival of interest in the metabolic adaptations of tumours, named for their original discoverer, Otto Warburg. Warburg reported a high rate of glycolysis in tumours, and a concurrent defect in mitochondrial respiration. The rediscovery of Warburg's hypothesis coincided with the discovery of mitochondrial tumours suppressor genes that may conform to Warburg's hypothesis. Succinate dehydrogenase and fumarate hydratase are mitochondrial proteins of the TCA cycle and the respiratory chain and when mutated lead to tumours of the nervous system known as paragangliomas and pheochromocytomas, and in the case of fumarate hydratase, cutaneous and uterine leiomyomas and renal cell cancer. Recently a novel mitochondrial protein, SDHAF2 (SDH5), was also shown to be a paraganglioma-related tumour suppressor gene. Another mitochondrial and TCA cycle-related protein, isocitrate dehydrogenase 2 is, together with IDH1, frequently mutated in the brain tumour glioblastoma. There are currently many competing hypotheses on the role of these genes in tumourigenesis, but frequent themes are the stabilization of hypoxia inducible factor 1 and upregulation of genes involved in angiogenesis, glucose transport and glycolysis. Other postulated mechanisms include the inhibition of developmental apoptosis, altered gene expression due to histone deregulation and the acquisition of novel catalytic properties. Here we discuss these diverse hypotheses and highlight very recent findings on the possible effects of IDH gene mutations.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources