Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;38(7):2293-301.
doi: 10.1007/s10439-010-9995-4. Epub 2010 Mar 20.

Quantitative effects of coil packing density on cerebral aneurysm fluid dynamics: an in vitro steady flow study

Affiliations

Quantitative effects of coil packing density on cerebral aneurysm fluid dynamics: an in vitro steady flow study

M Haithem Babiker et al. Ann Biomed Eng. 2010 Jul.

Abstract

Over the past 15 years, coil embolization has emerged as an effective treatment option for cerebral aneurysms that is far less invasive than the long-standing convention of surgical clipping. However, aneurysm recurrence after coil embolization is not uncommon: recurrence rates as high as 50% have been reported in the literature. One factor that may contribute to recurrence after coiling is residual flow into the aneurysmal sac. At present, there is limited quantitative knowledge of the relationship between coil packing density and aneurysmal inflow. We present an in vitro fluid dynamic study of basilar tip aneurysm models that elucidates this relationship. At physiologically normal flow rates, we found that a packing density of 28.4% decreased aneurysmal inflow by 31.6% in a wide-neck model, and that a packing density of 36.5% decreased aneurysmal inflow by 49.6% in a narrow-neck model. Results also indicated that coiling reduced aneurysmal inflow more significantly at lower parent vessel flow rates, and that coiling reduced neck-plane velocity magnitudes more significantly for narrow-neck aneurysms. Our study provides novel quantitative information that could ultimately contribute to improved outcomes for patients with cerebral aneurysms by enabling more effective coil embolization.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources