Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 1;4(2):382-90.
doi: 10.1177/193229681000400220.

Characterization of cardiovascular outcomes in a type 2 diabetes glucose supply and insulin demand model

Affiliations

Characterization of cardiovascular outcomes in a type 2 diabetes glucose supply and insulin demand model

Scott V Monte et al. J Diabetes Sci Technol. .

Abstract

Background: The nonsignificant reduction in macrovascular outcomes observed in Action to Control Cardiovascular Risk in Diabetes; Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; and the Veterans Affairs Diabetes Trial have collectively created uncertainty with respect toward the proper extent of blood glucose reduction and also the optimal therapeutic choice to attain the reduction. In the article entitled "Glucose Supply and Insulin Demand Dynamics of Antidiabetic Agents" in this issue of Journal of Diabetes Science and Technology, we presented data for a pharmacokinetic/pharmacodynamic model that characterizes the effect of conventional antidiabetic therapies on the glucose supply and insulin demand dynamic. Here, it is our objective to test the hypothesis that, in conjunction with hemoglobin A1c (HbA1c), patients managed on the glucose supply side of the model would have fewer cardiovascular events versus those managed on the insulin demand side.

Methods: To test this hypothesis, the electronic medical records of a group model health maintenance organization were queried to compile a population of patients meeting the following inclusion criteria: (1) type 2 diabetes mellitus (T2DM), (2) known date of T2DM diagnosis; (3) ICD-9 or CPT code identification and chart review confirmation of a first major cardiovascular event (myocardial infarction, coronary artery bypass graft, or angioplasty),(4) five years of continuous eligibility, and (5) on antidiabetic therapy at the beginning of the 5-year observation period. These patients were subsequently matched (1:1) to T2DM patients meeting the same criteria who had not experienced an event and were analyzed for differences in glucose control (HbA1C), the glucose supply:insulin demand dynamic (SD ratio), and categorical combinations of both parameters.

Results: Fifty cardiovascular event patients met inclusion criteria and were matched to controls. No difference was observed for the average HbA1c or SD ratio between patients experiencing an event and controls (7.5 +/- 1.0% versus 7.3 +/- 0.9%, p = .275, and 1.2 +/- 0.3 versus 1.3 +/- 0.3, p = .205, respectively). Likewise, for categorical representations, there were no differences in event rate at the pre-identified breakpoints (HbA1c >or=7% versus <7%; 72% versus 64%, p = .391, and SD ratio >or=1 versus <1; 68% versus 76%, p = .373, >or=1.25 versus <1.25; 42% versus 56%, p = .161, >or=1.5 versus <1.5; 22% versus 30%, p = .362, respectively). Analyzing the combined effect of glucose control and the SD dynamic, patients managed at higher glucose values and on the insulin demand side of the model (HbA1c >or=7% and SD ratio <1.25) tended to have greater cardiovascular risk than those managed at an HbA1c <7%, or HbA1c >or=7% with an SD ratio >or=1.25 (61% versus 39%; p = .096).

Conclusion: Independently, more aggressive HbA1c reduction and higher SD ratio values were not independently associated with a reduction in cardiovascular outcomes. Combining the parameters, it would appear that patients managed at higher glucose values and on the insulin demand side of the model may have increased cardiovascular risk. Based on these findings, it is pertinent to conduct subsequent works to refine SD ratio estimates and apply the model to larger, long-term T2DM cardiovascular outcome trials. J Diabetes Sci Technol 2010;4(2):382-390.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Glucose supply and insulin demand model. CE, 1+2; HGU, 3; GNG, 4; IR, 5; PGU, 6; PIE, 7. HPV, hepatic portal vein.
Figure 2.
Figure 2.
Combined impact of HbA1c and SD ratio on cardiovascular event. CV, cardiovascular.

Similar articles

References

    1. Action to Control Cardiovascular Risk in Diabetes Study Group. Gerstein HC, Miller ME, Byington RP, Goff DC, Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH, Jr, Probstfield JL, Simons-Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–2559. - PMC - PubMed
    1. ADVANCE Collaborative Group. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–2572. - PubMed
    1. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD. VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–139. - PubMed
    1. Monte SV, Schentag JJ, Adelman MH, Paladino JA. Glucose supply and insulin demand dynamics of antidiabetic agents. J Diabetes Sci Technol. 2010;4(2):365–381. - PMC - PubMed
    1. Newton KM, Wagner EH, Ramsey SD, McCulloch D, Evans R, Sandhu N, Davis C. The use of automated data to identify complications and comorbidities of diabetes: a validation study. J Clin Epidemiol. 1999;52(3):199–207. - PubMed

MeSH terms