Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May;32(6):1723-32.

Effect of chronic near-ultraviolet radiation on the gray squirrel lens in vivo

Affiliations
  • PMID: 2032795

Effect of chronic near-ultraviolet radiation on the gray squirrel lens in vivo

S Zigman et al. Invest Ophthalmol Vis Sci. 1991 May.

Abstract

The effects of ambient exposure to near-ultraviolet (near-UV) radiation (300-400 nm) on the ocular lens of the diurnal squirrel (Sciurus carolinensis) are reported. Gray squirrels lived in cages illuminated for 12 hr a day with near-UV light (6 mW/cm2, 365 nm) for 1 yr. The non-UV-exposed controls were housed separately. In the lenses of UV-exposed animals, anterior pole changes occurred. Central epithelial cells swelled, disappeared, or underwent proliferation. A band of disoriented degenerating fiber cells was seen in the midcortex, with a degree of liquefaction. When lens protein compartments were separated by centrifugation, water-insoluble but urea-soluble fractions were enhanced in the outer and inner cortex and the nucleus. Both high-performance liquid chromatography and polyacrylamide gel electrophoresis revealed that proteins mainly in the midcortex and nucleus were altered considerably. Evidence of a loss of sulfhydryl compounds (by chemical and Raman spectroscopic analyses) and an increase of protein-thiol mixed disulfides (chemically) was also observed. These data prove that repetitive ambient exposure of diurnal animals to near-UV radiation at subsolar levels damages the lens by interfering with the maintenance of epithelial cells and altering the structural proteins; some of this may be due to the conversion of sulfhydryls to mixed disulfides.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources