Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 May;32(6):1864-75.

Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes

Affiliations
  • PMID: 2032808
Comparative Study

Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes

R M Lavker et al. Invest Ophthalmol Vis Sci. 1991 May.

Abstract

An important element of the recently proposed limbal stem cell model is that corneal epithelial cells migrate centripetally. The driving force for this migration is unknown, although it has been suggested that limbal epithelium, proliferates at a higher rate than central corneal epithelium, thus creating a population pressure toward the central cornea. This hypothesis was tested by measuring the relative proliferative rates of limbal and central corneal epithelia using 3H-thymidine autoradiographic techniques. The results indicate that, in both the New Zealand white rabbit and SENCAR mouse, the labeling index (LI) of limbal epithelium is actually lower than that of central corneal epithelium. This difference in LI persists throughout the circadian rhythm cycle. These results suggest that population pressure per se cannot be responsible for the centripetal migration of corneal epithelium and raise the possibility that preferential desquamation of central corneal epithelium may "draw" peripheral cells toward the central cornea. In both epithelia, the LI peak precedes the mitotic index (MI) peak during circadian cycle by 4-6 hr. These data therefore are in close agreement with earlier results on several nonocular stratified epithelia but contradict an earlier suggestion that the LI and MI peaks of corneal epithelium coincide. Finally, although most of the 3H-thymidine incorporating cells in central cornea may appear to be suprabasally located, they are only partially displaced into the suprabasal compartment. In most cases, such cells are still connected with the basement membrane through a thin stalk of cytoplasm. Since corneal epithelium rests on an exceptionally flat and rigid substratum, an increase in cellular volume in DNA-synthesizing cells may not be tolerated well in an already crowded basal layer. This may explain why an unusually large proportion of DNA-synthesizing cells are expelled preferentially into either a "second tier basal layer" or into the suprabasal compartment.

PubMed Disclaimer

Publication types

LinkOut - more resources