Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;12(4):491-504.
doi: 10.3109/14653241003649502.

Neuroectodermally converted human mesenchymal stromal cells provide cytoprotective effects on neural stem cells and inhibit their glial differentiation

Affiliations

Neuroectodermally converted human mesenchymal stromal cells provide cytoprotective effects on neural stem cells and inhibit their glial differentiation

Hans-Jörg Habisch et al. Cytotherapy. 2010 Jul.

Abstract

Background aims: In recent years, bone marrow (BM)-derived mesenchymal stromal cells (MSC) have become a promising source for neuroregenerative therapies. We evaluated the trophic effects of neuroectodermally converted MSC (mNSC) on neural stem cells (NSC).

Methods: We quantified the expression of growth factors by mNSC using real-time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) and studied the effects of mNSC conditioned medium and mNSC (in direct co-culture) on NSC proliferation, differentiation and survival.

Results: Neuroectodermal conversion of human MSC induced high expression of growth factors at both mRNA and protein levels, most prominently hepatocyte growth factor, vascular endothelial growth factor and amphiregulin (37 +/- 17, 92 +/- 44 and 12 +/- 11 ng/10(5) cells, respectively), which remained at high levels upon co-culturing with neural cells. Accordingly, mNSC conditioned medium and co-cultivation with mNSC reduced cell death of NSC (36% of control), stimulated their proliferation, attenuated glial differentiation of NSC (7 +/- 3 versus 59 +/- 6%; P < 0.01) and protected NSC against the neurotoxin 6-hydroxydopamine (with half-maximally concentrations EC(50) values of 217 +/- 207 microM in the presence of mNSC compared with 62 +/- 49 microM for NSC alone).

Conclusions: mNSC promote survival and proliferation, and inhibit glial differentiation, of NSC. Protection of NSC by mNSC against 6-hydroxy-dopamine is probably mediated by the release of cytotrophic factors. Our results promote neuroectodermally converted MSC as promising candidate cells for the development of neuroregenerative and neuroprotective therapies.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources