Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Apr 12;49(17):2978-86.
doi: 10.1002/anie.200905657.

Silicon-based cross-coupling reactions in the total synthesis of natural products

Affiliations
Review

Silicon-based cross-coupling reactions in the total synthesis of natural products

Scott E Denmark et al. Angew Chem Int Ed Engl. .

Abstract

Unlike other variants of transition-metal-catalyzed cross-coupling reactions, those based on organosilicon donors have not been used extensively in natural product synthesis. However, recent advances such as: 1) the development of mild reaction conditions, 2) the expansion of substrate scope, 3) the development of methods to stereoselectively and efficiently introduce the silicon-containing moiety, 4) the development of a large number of sequential processes, and 5) the advent of bifunctional bis(silyl) linchpin reagents, signify the coming of age of silicon-based cross-coupling reactions. The following case studies illustrate how silicon-based cross-coupling reactions play a strategic role in constructing carbon-carbon bonds in selected target molecules.

PubMed Disclaimer

Figures

Scheme 1.
Scheme 1.
Key steps in the synthesis of NK-104.[,]
Scheme 2.
Scheme 2.
The Heck reaction/cross-coupling sequence in the formal synthesis of nitidine.[24]
Scheme 3.
Scheme 3.
Medium-sized ring formation using sequential RCM/intramolecular cross-coupling reaction.[28]
Scheme 4.
Scheme 4.
The key ring-closure steps in the total synthesis of brasilenyne.[27] PMB=para-methoxybenzyl.
Scheme 5.
Scheme 5.
Key carbon–carbon bond-forming reactions in the total synthesis of herboxidiene/GEX 1A.[32] Bn=benzyl, DTBP=2,6-di-tert-butyl-pyridine, TBDPS=tert-butyldiphenylsilyl, Tf=trifluoromethanesulfonyl, TMS=trimethylsilyl.
Scheme 6.
Scheme 6.
Sequential cross-coupling of 1,4-bis(silyl)diene 22.[10d] dba=trans,trans-dibenzylideneacetone.
Scheme 7.
Scheme 7.
Preparation of the unsymmetrical polyene fragment of RK-397 using 22.[34] THP=tetrahydropyran.
Scheme 8.
Scheme 8.
The preparation and the cross-coupling of dihydropyranylsilanol 28.[7d]
Scheme 9.
Scheme 9.
The assembly of the C-aryl glycoside of papulacandin D.[36] Piv=pivaloyl, TES=triethylsilyl.
Scheme 10.
Scheme 10.
Key steps leading to the synthesis of isodomoic acid H.[37] Ts=4-toluenesulfonyl.
Scheme 11.
Scheme 11.
Conclusion of the synthesis of isodomoic acid G.[37] TIPS=triisopropylsilyl.

References

    1. Nicolaou KC, Bulger PG, Sarlah D, Angew. Chem 2005, 117, 4516 – 4563; Angew. Chem. Int. Ed. 2005, 44, 4442 – 4489. - PubMed
    1. For reviews on silicon-based cross-coupling reactions, see:

    2. Denmark SE, J. Org. Chem 2009, 74, 2915 – 2927; - PMC - PubMed
    3. Denmark SE, Regens CS, Acc. Chem. Res 2008, 41, 1486 – 1499; - PMC - PubMed
    4. Denmark SE, Baird JD, Chem. Eur. J 2006, 12, 4954 – 4963; - PubMed
    5. Nakao Y, Sahoo AK, Imanaka H, Yada A, Hiyama T, Pure Appl. Chem 2006, 78, 435 – 440;
    6. Tsuji J, Palladium Reagents and Catalysts: New Perspectives for the 21st Century, Wiley, Wessex, England, 2004, pp. 339 – 348;
    7. Denmark SE, Sweis RF in Metal-Catalyzed Cross-Coupling Reactions: Second, Completely Revised and Enlarged Edition, (Eds.: de Meijere A, Diederich F), Wiley-VCH, Weinheim, 2004, Chapter 4;
    8. Denmark SE, Ober MH, Aldrichimica Acta 2003, 36, 75 – 85;
    9. Denmark SE, Sweis RF, Acc. Chem. Res 2002, 35, 835 – 846; - PubMed
    10. Denmark SE, Sweis RF, Chem. Pharm. Bull 2002, 50, 1531 – 1541; - PubMed
    11. Hiyama T, Shirakawa E, Top. Curr. Chem 2002, 219, 61 – 85;
    12. DeShong P, Handy CJ, Mowery ME, Pure Appl. Chem 2000, 72, 1655 – 1658;
    13. Hiyama T in Metal-Catalyzed Cross-Coupling Reactions (Eds.: Diederich F, Stang PJ), Weinheim, Wiley-VCH, 1998, Chapter 10;
    14. Hiyama T, Hatanaka Y, Pure. Appl. Chem 1994, 66, 1471 – 1478;
    15. Hatanaka Y, Hiyama T, Synlett 1991, 845 – 853;
    16. Hatanaka Y, Hiyama T, J. Synth. Org. Chem. Jpn 1990, 48, 834 – 843.
    1. Strotman NA, Sommer S, Fu GC, Angew. Chem 2007, 119, 3626 – 3628; Angew. Chem. Int. Ed. 2007, 46, 3556 – 3558; - PubMed
    2. Homsi F, Hosoi K, Nozaki K, Hiyama T, J. Organomet. Chem 2001, 624, 208 – 216;
    3. Homsi F, Nozaki K, Hiyama T, Tetrahedron Lett. 2000, 41, 5869 – 5872;
    4. Kanie K, Mizuno K, Kuroboshi M, Takehara S, Hiyama T, Bull. Chem. Soc. Jpn 1999, 72, 2523 – 2535;
    5. Hagiwara E, Gouda K.-i., Hatanaka Y, Hiyama T, Tetrahedron Lett. 1997, 38, 439 – 442;
    6. Matsuhashi H, Asai S, Hirabayashi K, Hatanaka Y, Mori A, Hiyama T, Bull. Chem. Soc. Jpn 1997, 70, 1943 – 1952;
    7. Matsuhashi H, Asai S, Hirabayashi K, Hatanaka Y, Mori A, Hiyama T, Bull. Chem. Soc. Jpn 1997, 70, 437 – 444;
    8. Gouda K.-i., Hagiwara E, Hatanaka Y, Hiyama T, J. Org. Chem 1996, 61, 7232 – 7233; - PubMed
    9. Matsuhashi H, Hatanaka Y, Kuroboshi M, Hiyama T, Heterocycles 1996, 42, 375 – 384;
    10. Takahashi K, Minami T, Ohara Y, Hiyama T, Bull. Chem. Soc. Jpn 1995, 68, 2649 – 2656;
    11. Matsuhashi H, Kuroboshi Y, Hatanaka Y, Hiyama T, Tetrahedron Lett. 1994, 35, 6507 – 6510;
    12. Hatanaka Y, Goda K, Okahara T, Hiyama T, Tetrahedron 1994, 50, 8301 – 8316;
    13. Takahashi K, Minami T, Ohara Y, Hiyama T, Tetrahedron Lett. 1993, 34, 8263 – 8266;
    14. Hatanaka Y, Fukushima S, Hiyama T, Tetrahedron 1992, 48, 2113 – 2126;
    15. Hatanaka Y, Fukushima S, Hiyama T, Heterocycles 1990, 30, 303 – 306;
    16. Hatanaka Y, Fukushima S, Hiyama T, Chem. Lett 1989, 1711 – 1714;
    17. Hatanaka Y, Hiyama Y, J. Org. Chem 1989, 54, 268 – 270.
    1. Sahoo AK, Nakao Y, Hiyama T, Chem. Lett 2004, 33, 632 – 633;
    2. Sahoo AK, Oda T, Nakao Y, Hiyama T, Adv. Synth. Catal 2004, 346, 1715 – 1727;
    3. Nakao Y, Oda T, Sahoo AK, Hiyama T, J. Organomet. Chem 2003, 687, 570 – 573.
    1. Dai X, Strotman NA, Fu GC, J. Am. Chem. Soc 2008, 130, 3302 – 3303; - PubMed
    2. Lee J-Y, Fu GC, J. Am. Chem. Soc 2003, 125, 5616 – 5617; - PubMed
    3. Lee HM, Nolan SP, Org. Lett 2000, 2, 2053 – 2055; - PubMed
    4. Shibata K, Miyazawa K, Goto Y, Chem. Commun 1997, 1309 – 1310;
    5. Seganish WM, DeShong P, J. Org. Chem 2004, 69, 1137 – 1143; - PubMed
    6. McElroy WT, DeShong P, Org. Lett 2003, 5, 4779 – 4782; - PubMed
    7. Mowery ME, DeShong P, Org. Lett 1999, 1, 2137 – 2140; - PubMed
    8. Mowery ME, DeShong P, J. Org. Chem 1999, 64, 3266 – 3270; - PubMed
    9. Mowery ME, DeShong P, J. Org. Chem 1999, 64, 1684 – 1688; - PubMed
    10. Tamao K, Kobayashi K, Ito Y, Tetrahedron Lett. 1989, 30, 6051 – 6054.

Publication types

MeSH terms

Substances

LinkOut - more resources