Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 1;94(3):790-9.
doi: 10.1002/jbm.a.32721.

Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds

Affiliations

Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds

Giulia Gastaldi et al. J Biomed Mater Res A. .

Abstract

The use of stem cells in regenerative medicine is an appealing area of research that has received a great deal of interest in recent years. The population called human adipose tissue-derived stem cells (hASCs) share many of the characteristic of its counterpart of marrow including extensive proliferative potential and the ability to undergo multilineage differentiation along classical mesenchymal lineages: adipogenesis, chondrogenesis, osteogenesis, and myogenesis. The aim of this study was to evaluate with biochemical and morphological methods the adhesion and differentiation of hASCs grown on trabecular titanium scaffolds. The hASCs isolated from subcutaneous adipose tissue after digestion with collagenase were seeded on monolayer and on trabecular titanium scaffolds and incubated at 37 degrees C in 5% CO(2) with osteogenic medium or control medium.The results showed that hASCs were able to adhere to titanium scaffolds, to proliferate, to acquire an osteoblastic-like phenotype, and to produce a calcified extracellular matrix with protein, such as, decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type I collagen. These data suggest that this kind of scaffold/cells construct is effective to regenerate damaged tissue and to restore the function of bone tissue.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources