Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays
- PMID: 20337397
- DOI: 10.1021/ac901157x
Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays
Abstract
Arrays of highly ordered silicon nanowire (SiNW) clusters are fabricated using complementary metal-oxide semiconductor (CMOS) field effect transistor-compatible technology, and the ultrasensitive, label-free, electrical detection of cardiac biomarker in real time using the array sensor is presented. The successful detection of human cardiac troponin-T (cTnT) has been demonstrated in an assay buffer solution of concentration down to 1 fg/mL, as well as in an undiluted human serum environment of concentration as low as 30 fg/mL. The high specificity, selectivity, and swift response time of the SiNWs to the presence of ultralow concentrations of a target protein in a biological analyte solution, even in the presence of a high total protein concentration, paves the way for the development of a medical diagnostic system for point-of-care application that is able to provide an early and accurate indication of cardiac cellular necrosis.
Similar articles
-
Silicon nanowire arrays for label-free detection of DNA.Anal Chem. 2007 May 1;79(9):3291-7. doi: 10.1021/ac061808q. Epub 2007 Apr 4. Anal Chem. 2007. PMID: 17407259
-
Complementary metal oxide semiconductor compatible silicon nanowires-on-a-chip: fabrication and preclinical validation for the detection of a cancer prognostic protein marker in serum.Anal Chem. 2015 Feb 3;87(3):1662-8. doi: 10.1021/ac503374j. Epub 2015 Jan 15. Anal Chem. 2015. PMID: 25531273
-
Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor.Chem Commun (Camb). 2008 Nov 30;(44):5749-51. doi: 10.1039/b812968a. Epub 2008 Oct 1. Chem Commun (Camb). 2008. PMID: 19009069
-
Silicon nanowire biosensor and its applications in disease diagnostics: a review.Anal Chim Acta. 2012 Oct 24;749:1-15. doi: 10.1016/j.aca.2012.08.035. Epub 2012 Aug 28. Anal Chim Acta. 2012. PMID: 23036462 Review.
-
Nanowire-based sensors.Small. 2010 Aug 16;6(16):1705-22. doi: 10.1002/smll.201000972. Small. 2010. PMID: 20712030 Review.
Cited by
-
Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin.Biosens Bioelectron. 2011 Mar 15;26(7):3297-302. doi: 10.1016/j.bios.2011.01.001. Epub 2011 Jan 6. Biosens Bioelectron. 2011. PMID: 21269820 Free PMC article.
-
Metal-Oxide FET Biosensor for Point-of-Care Testing: Overview and Perspective.Molecules. 2022 Nov 17;27(22):7952. doi: 10.3390/molecules27227952. Molecules. 2022. PMID: 36432052 Free PMC article. Review.
-
Gas-Phase Synthesis for Label-Free Biosensors: Zinc-Oxide Nanowires Functionalized with Gold Nanoparticles.Sci Rep. 2019 Nov 22;9(1):17370. doi: 10.1038/s41598-019-53960-2. Sci Rep. 2019. PMID: 31758054 Free PMC article.
-
A Fast and Label-Free Potentiometric Method for Direct Detection of Glutamine with Silicon Nanowire Biosensors.Biosensors (Basel). 2022 May 27;12(6):368. doi: 10.3390/bios12060368. Biosensors (Basel). 2022. PMID: 35735517 Free PMC article.
-
Ionic contrast across a lipid membrane for Debye length extension: towards an ultimate bioelectronic transducer.Nat Commun. 2021 Jun 18;12(1):3741. doi: 10.1038/s41467-021-24122-8. Nat Commun. 2021. PMID: 34145296 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials