Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2010 Mar 28:5:17.
doi: 10.1186/1749-8090-5-17.

Perioperative infusion of low- dose of vasopressin for prevention and management of vasodilatory vasoplegic syndrome in patients undergoing coronary artery bypass grafting-A double-blind randomized study

Affiliations
Randomized Controlled Trial

Perioperative infusion of low- dose of vasopressin for prevention and management of vasodilatory vasoplegic syndrome in patients undergoing coronary artery bypass grafting-A double-blind randomized study

Georgios Papadopoulos et al. J Cardiothorac Surg. .

Abstract

Preoperative medication by inhibitors of angiotensin-converting enzyme (ACE) in coronary artery patients predisposes to vasoplegic shock early after coronary artery bypass grafting. Although in the majority of the cases this shock is mild, in some of them it appears as a situation, "intractable" to high-catecholamine dose medication. In this study we examined the possible role of prophylactic infusion of low-dose vasopressin, during and for the four hours post-bypass after cardiopulmonary bypass, in an effort to prevent this syndrome. In addition, we studied the influence of infused vasopressin on the hemodynamics of the patients, as well as on the postoperative urine-output and blood-loss. In our study 50 patients undergoing coronary artery bypass grafting were included in a blind-randomized basis. Two main criteria were used for the eligibility of patients for coronary artery bypass grafting: ejection fraction between 30-40%, and patients receiving ACE inhibitors, at least for four weeks preoperatively. The patients were randomly divided in two groups, the group A who were infused with 0.03 IU/min vasopressin and the group B who were infused with normal saline intraoperativelly and for the 4 postoperative hours. Measurements of mean artery pressure (MAP), central venous pressure (CVP), systemic vascular resistance (SVR), ejection fracture (EF), heart rate (HR), mean pulmonary artery pressure (MPAP), cardiac index (CI) and pulmonary vascular resistance (PVR) were performed before, during, and after the operation. The requirements of catecholamine support, the urine-output, the blood-loss, and the requirements in blood, plasma and platelets for the first 24 hours were included in the data collected. The incidence of vasodilatory shock was significantly lower (8% vs 20%) in group A and B respectively (p = 0,042). Generally, the mortality was 12%, exclusively deriving from group B. Postoperatively, significant higher values of MAP, CVP, SVR and EF were recorded in the patients of group A, compared to those of group B. In group A norepinephrine was necessary in fewer patients (p = 0.002) and with a lower mean dose (p = 0.0001), additive infusion of epinephrine was needed in fewer patients (p = 0.001), while both were infused for a significant shorter infusion-period (p = 0.0001). Vasopressin administration (for group A) was associated with a higher 24 hour diuresis) (0.0001).In conclusion, low-dose of infused vasopressin during cardiopulmonary bypass and for the next 4 hours is beneficial for its postoperative hemodynamic profile, reduces the doses of requirements of catecholamines and contributes to prevention of the postcardiotomy vasoplegic shock in the patient with low ejection fraction who is receiving ACE preoperatively.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Mean Pulmonary Pressure during time-points T1 - T5. Distribution of values for mean pulmonary pressure (MPAP) during time-points T1 - T5 for group I (vasopressin, in blue boxplots) and group II (placebo, in green boxplots). (median = black line, boxplot = 50% of data set, lines on both sides of the boxplot = dispersion for 99% of values, * = numbers outside of distribution range for 99% of values).
Figure 2
Figure 2
Cardiac Index during time-points T1 - T5. Distribution of values for cardiac index (CI) during time-points T1 - T5 for group I (vasopressin, in blue boxplots) and group II (placebo, in green boxplots). (median = black line, boxplot = 50% of data set, lines on both sides of the boxplot = dispersion for 99% of values, * = numbers outside of distribution range for 99% of values).
Figure 3
Figure 3
Mean arterial pressure values during time-points T1 - T5. Distribution of mean arterial pressure (MAP) values during time-points T1 - T5 for group I (vasopressin, in blue boxplots) and group II (placebo, in green boxplots). (median = black line, boxplot = 50% of data set, lines on both sides of the boxplot = dispersion for 99% of values, * = numbers outside of distribution range for 99% of values).
Figure 4
Figure 4
Central Venous Pressure during time- points T1 - T5. Distribution of values for central venous pressure (CVP) during time- points T1 - T5 for group I (vasopressin, in blue boxplots) and group II (placebo, in green boxplots). (median = black line, boxplot = 50% of data set, lines on both sides of the boxplot = dispersion for 99% of values, * = numbers outside of distribution range for 99% of values).
Figure 5
Figure 5
Systemic Vascular Resistance during time-points T1 - T5. Distribution of values for peripheral resistance (SVR) during time-points T1 - T5 for group I (vasopressin, in blue boxplots) and group II (placebo, in green boxplots). (median = black line, boxplot = 50% of data set, lines on both sides of the boxplot = dispersion for 99% of values, * = numbers outside of distribution range for 99% of values).
Figure 6
Figure 6
Left ventricular Ejection Fraction during time-points T1 - T5. Distribution of values for left ventricular ejection fraction (E.F.) during time-points T1 - T5 for group I (vasopressin, in blue boxplots) and group II (placebo, in green boxplots). (median = black line, boxplot = 50% of data set, lines on both sides of the boxplot = dispersion for 99% of values, * = numbers outside of distribution range for 99% of values).

Similar articles

Cited by

References

    1. Carrel T, Englberger L, Mohacsi P, Neidhart P, Schmidli J. Low systemic vascular resistance after cardiopulmonary bypass: incidence, etiology, and clinical importance. J Card Surg. 2000;15:347–353. doi: 10.1111/j.1540-8191.2000.tb00470.x. - DOI - PubMed
    1. Sun X, Zhang L, Hill PC, Lowery R, Lee AT, Molyneaux RE, Corso PJ, Boyce SW. Is incidence of postoperative vasoplegic syndrome different between off-pump and on-pump coronary artery bypass grafting surgery? Eur J Cardiothorac Surg. 2008;34:820–825. doi: 10.1016/j.ejcts.2008.07.012. - DOI - PubMed
    1. Noto A, Lentini S, Versaci A, Giardina M, Risitano DC, Messina R, David A. A retrospective analysis of terlipressin in bolus for the management of refractory vasoplegic hypotension after cardiac surgery. Interact CardioVascular and Thoracic Surgery. 2009;9:588–92. doi: 10.1510/icvts.2009.209890. - DOI - PubMed
    1. Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97:215–52. doi: 10.1097/00000542-200207000-00030. - DOI - PubMed
    1. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345:588–595. doi: 10.1056/NEJMra002709. - DOI - PubMed

Publication types