Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 15;408(12):2459-66.
doi: 10.1016/j.scitotenv.2010.02.036. Epub 2010 Mar 29.

Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater

Affiliations

Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater

Erik Ytreberg et al. Sci Total Environ. .

Abstract

Biocide-containing anti-fouling paints are regulated and approved according to the added active ingredients, such as Cu. Biocide-free paints are considered to be less environmentally damaging and do not need an approval. Zn, a common ingredient in paints with the potential of causing adverse effects has received only minor attention. Laboratory experiments were conducted in artificial brackish seawater (ASW) and natural brackish seawater (NSW) to quantify release rates of Cu and Zn from biocide-containing and biocide-free labeled eroding anti-fouling paints used on commercial vessels as well as leisure boats. In addition, organisms from three trophic levels, the crustacean Nitocra spinipes, the macroalga Ceramium tenuicorne and the bacteria Vibrio fischeri, were exposed to Cu and Zn to determine the toxicity of these metals. The release rate of Cu in NSW was higher from the paints for professional use (3.2-3.6 microg cm(-)(2)d(-1)) than from the biocide leaching leisure boat paint (1.1 microg cm(-)(2)d(-1)). Biocide-free paints did leach considerably more Zn (4.4-8.2 microg cm(-)(2)d(-1)) than biocide-containing leisure boat paint (3.0 microg cm(-)(2)d(-1)) and ship paints (0.7-2.0 microg cm(-)(2)d(-1)). In ASW the release rates of both metals were notably higher than in NSW for most tested paints. The macroalga was the most sensitive species to both Cu (EC(50)=6.4 microg l(-1)) and Zn (EC(50)=25 microg l(-1)) compared to the crustacean (Cu, LC(50)=2000 microg l(-1) Zn, LC(50)=890 microg l(-1)), and the bacteria (Cu, EC(50)=800 microg l(-1) and Zn, EC(50)=2000 microg l(-1)). The results suggest that the amounts of Zn and Cu leached from anti-fouling paints may attain toxic concentrations in areas with high boat density. To fully account for potential ecological risk associated with anti-fouling paints, Zn as well as active ingredients should be considered in the regulatory process.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources