Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A-I and high density lipoproteins
- PMID: 20347719
- PMCID: PMC2883020
- DOI: 10.1016/j.bbamem.2010.03.019
Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A-I and high density lipoproteins
Abstract
Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.
Copyright 2010 Elsevier B.V. All rights reserved.
Figures








Similar articles
-
A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.Biophys J. 2000 Jul;79(1):434-47. doi: 10.1016/S0006-3495(00)76305-3. Biophys J. 2000. PMID: 10866969 Free PMC article.
-
Membrane effects of N-terminal fragment of apolipoprotein A-I: a fluorescent probe study.J Fluoresc. 2015 Mar;25(2):253-61. doi: 10.1007/s10895-015-1501-9. Epub 2015 Jan 18. J Fluoresc. 2015. PMID: 25595057
-
Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes.PLoS One. 2012;7(6):e40254. doi: 10.1371/journal.pone.0040254. Epub 2012 Jun 29. PLoS One. 2012. PMID: 22768264 Free PMC article.
-
Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms.J Fluoresc. 2017 Jan;27(1):243-249. doi: 10.1007/s10895-016-1951-8. Epub 2016 Oct 13. J Fluoresc. 2017. PMID: 27738919 Review.
-
Model membrane platforms to study protein-membrane interactions.Mol Membr Biol. 2012 Aug;29(5):144-54. doi: 10.3109/09687688.2012.700490. Epub 2012 Jul 26. Mol Membr Biol. 2012. PMID: 22831167 Review.
Cited by
-
LAURDAN since Weber: The Quest for Visualizing Membrane Heterogeneity.Acc Chem Res. 2021 Feb 16;54(4):976-987. doi: 10.1021/acs.accounts.0c00687. Epub 2021 Jan 29. Acc Chem Res. 2021. PMID: 33513300 Free PMC article.
-
Effect of Anionic Lipids on Mammalian Plasma Cell Membrane Properties.Langmuir. 2023 Feb 21;39(7):2676-2691. doi: 10.1021/acs.langmuir.2c03161. Epub 2023 Feb 9. Langmuir. 2023. PMID: 36757323 Free PMC article.
-
Lipid exchange of apolipoprotein A-I amyloidogenic variants in reconstituted high-density lipoprotein with artificial membranes.Protein Sci. 2024 May;33(5):e4987. doi: 10.1002/pro.4987. Protein Sci. 2024. PMID: 38607188 Free PMC article.
-
CAPRYDAA, an anthracene dye analog to LAURDAN: a comparative study using cuvette and microscopy.J Mater Chem B. 2020 Jan 7;8(1):88-99. doi: 10.1039/c9tb01738k. Epub 2019 Nov 26. J Mater Chem B. 2020. PMID: 31769463 Free PMC article.
-
Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles.J Membr Biol. 2011 May;241(1):1-10. doi: 10.1007/s00232-011-9348-8. Epub 2011 Apr 6. J Membr Biol. 2011. PMID: 21468650 Free PMC article.