The costs and cost-effectiveness of allogeneic peripheral blood stem cell transplantation versus bone marrow transplantation in pediatric patients with acute leukemia
- PMID: 20348004
- PMCID: PMC2919628
- DOI: 10.1016/j.bbmt.2010.03.016
The costs and cost-effectiveness of allogeneic peripheral blood stem cell transplantation versus bone marrow transplantation in pediatric patients with acute leukemia
Abstract
In a retrospective study, we evaluated the cost and cost-effectiveness of allogeneic peripheral blood stem cell transplantation (PBSCT) (n = 30) compared with bone marrow transplantation (BMT) (n = 110) in children with acute leukemia after 1 year of follow-up. Treatment success was defined as disease-free survival at 1 year posttransplantation. For patients at standard risk for disease, the treatment success rate was 57.1% for PBSCT recipients and 80.3% for BMT recipients (P = not significant [NS]). The average total cost per treatment success at 1 year in the standard-risk disease group was $512,294 for PBSCT recipients and $352,885 for BMT recipients (P = NS). For patients with high-risk disease, the treatment success rate was 18.8% for PBSCT recipients and 23.5% for BMT recipients (P = NS). The cumulative average cost was $457,078 in BMT recipients and $377,316 in PBSCT recipients (P = NS). Point estimates of the incremental cost-effectiveness ratio (ICER) indicate that in patients with standard-risk disease, allogeneic BMT had lower costs and greater effectiveness than PBSCT (ICER, -$687,108; 95% confidence interval [CI], $2.4 million to dominated). For patients with high-risk disease, BMT was more effective and more costly, and it had an ICER of $1.69 million (95% CI, $29.7 million to dominated) per additional treatment success. The comparative economic evaluation provides support for BMT in standard-risk patients, but much uncertainty precludes a clear advantage of either treatment option in patients with high-risk disease. More studies using larger and randomized controlled trials are needed to confirm the long-term cost-effectiveness of each procedure.
Copyright (c) 2010 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Figures


References
-
- Schmitz N, Linch DC, Dreger P, et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet. 1996;347:353–357. - PubMed
-
- To LB, Roberts MM, Haylock DN, et al. Comparison of heamatological recovery times and supportive care requirements of autologous recovery phase peripheral blood stem cell transplants, autologous bone marrow transplants and allogeneic bone marrow transplants. Bone Marrow Transplant. 1992;9:277–284. - PubMed
-
- Roberts MM, To LB, Gillis D, et al. Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation. Bone Marrow Transplant. 1993;12:469–475. - PubMed
-
- Nademanee A, Schmidt GM, Parker P, et al. The outcome of matched unrelated donor bone marrow transplantation in patients with hematologic malignancies using molecular typing for donor selection and graft-versus-host disease prophylaxis regimen of cyclosporine, methotrexate and prednisone. Blood. 1995;86:1228–1234. - PubMed
-
- Nash RA, Piñeiro LA, Storb R, et al. FK506 in combination with methotrexate for the prevention of graft-versus-host disease after marrow transplantation from matched unrelated donors. Blood. 1996;88:3634–3641. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources