Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle
- PMID: 20348224
- PMCID: PMC2886650
- DOI: 10.1152/ajpheart.00006.2010
Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle
Abstract
Application of intermittent pneumatic compressions (IPC) is an extensively used therapeutic strategy in vascular medicine, but the mechanisms by which this method works are unclear. We tested the hypothesis that acute application (150 min) of cyclic leg compressions in a rat model signals upregulation of angiogenic factors in skeletal muscle. To explore the impact of different pressures and frequency of compressions, we divided rats into four groups as follows: 120 mmHg (2 s inflation/2 s deflation), 200 mmHg (2 s/2 s), 120 mmHg (4 s/16 s), and control (no intervention). Blood flow and leg oxygenation (study 1) and the mRNA expression of angiogenic mediators in the rat tibialis anterior muscle (study 2) were assessed after a single session of IPC. In all three groups exposed to the intervention, a modest hyperemia (approximately 37% above baseline) between compressions and a slight, nonsignificant increase in leg oxygen consumption (approximately 30%) were observed during IPC. Compared with values in the control group, vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) mRNA increased significantly (P < 0.05) only in rats exposed to the higher frequency of compressions (2 s on/2 s off). Endothelial nitric oxide synthase, matrix metalloproteinase-2, and hypoxia-inducible factor-1alpha mRNA did not change significantly following the intervention. These findings show that IPC application augments the mRNA content of key angiogenic factors in skeletal muscle. Importantly, the magnitude of changes in mRNA expression appeared to be modulated by the frequency of compressions such that a higher frequency (15 cycles/min) evoked more robust changes in VEGF and MCP-1 compared with a lower frequency (3 cycles/min).
Figures





References
-
- Abumiya T, Sasaguri T, Taba Y, Miwa Y, Miyagi M. Shear stress induces expression of vascular endothelial growth factor receptor Flk-1/KDR through the CT-rich Sp1 binding site. Arterioscler Thromb Vasc Biol 22: 907–913, 2002 - PubMed
-
- Breen EC, Johnson EC, Wagner H, Tseng HM, Sung LA, Wagner PD. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J Appl Physiol 81: 355–361, 1996 - PubMed
-
- Brown MD, Hudlicka O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 6: 1–14, 2003 - PubMed
-
- Chen AH, Frangos SG, Kilaru S, Sumpio BE. Intermittent pneumatic compression devices—physiological mechanisms of action. Eur J Vasc Endovasc Surg 21: 383–392, 2001 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous