Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 22;53(8):3227-46.
doi: 10.1021/jm9018788.

Oxetanes in drug discovery: structural and synthetic insights

Affiliations

Oxetanes in drug discovery: structural and synthetic insights

Georg Wuitschik et al. J Med Chem. .

Abstract

An oxetane can trigger profound changes in aqueous solubility, lipophilicity, metabolic stability, and conformational preference when replacing commonly employed functionalities such as gem-dimethyl or carbonyl groups. The magnitude of these changes depends on the structural context. Thus, by substitution of a gem-dimethyl group with an oxetane, aqueous solubility may increase by a factor of 4 to more than 4000 while reducing the rate of metabolic degradation in most cases. The incorporation of an oxetane into an aliphatic chain can cause conformational changes favoring synclinal rather than antiplanar arrangements of the chain. Additionally spirocyclic oxetanes (e.g., 2-oxa-6-aza-spiro[3.3]heptane) bear remarkable analogies to commonly used fragments in drug discovery, such as morpholine, and are even able to supplant the latter in its solubilizing ability. A rich chemistry of oxetan-3-one and derived Michael acceptors provide venues for the preparation of a broad variety of novel oxetanes not previously documented, thus providing the foundation for their broad use in chemistry and drug discovery.

PubMed Disclaimer

Publication types

LinkOut - more resources