Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2010 May;31(5):491-7.
doi: 10.1086/651671.

Trial of universal gloving with emollient-impregnated gloves to promote skin health and prevent the transmission of multidrug-resistant organisms in a surgical intensive care unit

Affiliations
Clinical Trial

Trial of universal gloving with emollient-impregnated gloves to promote skin health and prevent the transmission of multidrug-resistant organisms in a surgical intensive care unit

Gonzalo Bearman et al. Infect Control Hosp Epidemiol. 2010 May.

Abstract

Objective: To compare the efficacy of universal gloving with emollient-impregnated gloves with standard contact precautions for the control of multidrug-resistant organisms (MDROs) and to measure the effect on healthcare workers' (HCWs') hand skin health.

Design: Prospective before-after trial.

Setting: An 18-bed surgical intensive care unit.

Methods: During phase 1 (September 2007 through March 2008) standard contact precautions were used. During phase 2 (March 2008 through September 2008) universal gloving with emollient-impregnated gloves was used, and no contact precautions. Patients were screened for vancomycin-resistant Enterococcus (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). HCW hand hygiene compliance and hand skin health and microbial contamination were assessed. The incidences of device-associated infection and Clostridium difficile infection (CDI) were determined.

Results: The rate of compliance with contact precautions (phase 1) was 67%, and the rate of compliance with universal gloving (phase 2) was 78% (P = .01). Hand hygiene compliance was higher during phase 2 than during phase 1 (before patient care, 40% vs 35% of encounters; P = .001; after patient care, 63% vs 51% of encounters; P < .001). No difference was observed in MDRO acquisition. During phases 1 and 2, incidences of device-related infections, in number of infections per 1,000 device-days, were, respectively, 3.7 and 2.6 for bloodstream infection (P = .10), 8.9 and 7.8 for urinary tract infection (P = .10), and 1.0 and 1.1 for ventilator-associated pneumonia (P = .09). The CDI incidence in phase 1 and in phase 2 was, respectively, 2.0 and 1.4 cases per 1,000 patient-days (P = .53). During phase 1, 29% of HCW hand cultures were MRSA positive, compared with 13% during phase 2 (P = .17); during phase 1, 2% of hand cultures were VRE positive, compared with 0 during phase 2 (P = .16). Hand skin health improved during phase 2.

Conclusions: Compared with contact precautions, universal gloving with emollient-impregnated gloves was associated with improved hand hygiene compliance and skin health. No statistically significant change in the rates of device-associated infection, CDI, or patient MDRO acquisition was observed. Universal gloving may be an alternative to contact precautions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources