mTOR signaling: a central pathway to pathogenesis in systemic lupus erythematosus?
- PMID: 20350481
- PMCID: PMC3131182
mTOR signaling: a central pathway to pathogenesis in systemic lupus erythematosus?
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with unclear etiology. Treatments for it often provide inadequate control of disease activity or are limited by side effects. Recent studies have shown that rapamycin can be an effective treatment in both murine lupus models and human SLE. We demonstrated that rapamycin could directly alter molecular abnormalities in SLE T cells related to calcium signaling but not mitochondrial function. However, in light of increased knowledge of the role of mammalian target of rapamycin (mTOR) signaling throughout the immune system, several other potential sites of rapamycin action have been revealed. Specifically, mTOR regulates the production of interferon-alpha and the maintenance of immune tolerance at the level of the regulatory T cell and the dendritic cell, and can promote Th2 versus Th1 immune responses. Thus mTOR offers a window into diverse facets of lupus pathogenesis as well as a unifying narrative in our understanding of the therapeutic efficacy of rapamycin in SLE.
Figures

References
-
- Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8. - PubMed
-
- Cervera R, Khamashta MA, Font J, Sebastiani GD, Gil A, Lavilla P, Domenech I, Aydintug AO, Jedryka-Goral A, de Ramon E. Systemic lupus erythematosus: Clinical and immunologic patterns of disease expression in a cohort of 1,000 patients. the european working party on systemic lupus erythematosus. Medicine (Baltimore) 1993;72:113–24. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous