Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;36(6):1448-59.
doi: 10.1183/09031936.00106609. Epub 2010 Mar 29.

Phosphoinositide 3-kinase δ inhibitor suppresses interleukin-17 expression in a murine asthma model

Affiliations
Free article

Phosphoinositide 3-kinase δ inhibitor suppresses interleukin-17 expression in a murine asthma model

S J Park et al. Eur Respir J. 2010 Dec.
Free article

Abstract

Phosphoinositide 3-kinases (PI3Ks) contribute to the pathogenesis of asthma by regulating the activation of inflammatory mediators, inflammatory cell recruitment and immune cell function. Recent findings have indicated that PI3Ks also regulate the expression of interleukin (IL)-17, which has been recognised as an important cytokine involved in airway inflammation. In the present study, we investigated a role of PI3Kδ in the regulation of IL-17 expression in allergic airway disease using a murine model of asthma. After ovalbumin inhalation, administration of a selective p110δ inhibitor, IC87114, significantly attenuated airway infiltration of total cells, lymphocytes, neutrophils and eosinophils, as well as airway hyperresponsiveness, and attenuated the increase in IL-17 protein and mRNA expression. Moreover, IC87114 reduced levels of IL-4, -5 and -13, expression of keratinocyte chemoattractant protein and mRNA, and nuclear factor (NF)-κB activity. In addition, a NF-κB inhibitor, BAY 11-7085 substantially reduced the increase in IL-17 protein levels. Our results also showed that inhibition of IL-17 activity with an anti-IL-17 antibody remarkably reduced airway inflammation and hyperresponsiveness. These findings suggest that inhibition of the p110δ signalling pathway suppresses IL-17 expression through regulation of NF-κB activity and, thus, has therapeutic potential in asthma.

PubMed Disclaimer

Publication types

MeSH terms