Substitution of the Walker A lysine by arginine in the nucleotide-binding domains of sulphonylurea receptor SUR2B: effects on ligand binding and channel activity
- PMID: 20352196
- DOI: 10.1007/s00210-010-0510-0
Substitution of the Walker A lysine by arginine in the nucleotide-binding domains of sulphonylurea receptor SUR2B: effects on ligand binding and channel activity
Abstract
Sulphonylurea receptors (SURs) serve as regulatory subunits of ATP-sensitive K(+) channels. SURs are members of the ATP-binding cassette (ABC) protein superfamily and contain two conserved nucleotide-binding domains (NBDs) which bind and hydrolyse MgATP; in addition, they carry the binding sites for the sulphonylureas like glibenclamide (GBC) which close the channel and for the K(ATP) channel openers such as P1075. Here we have exchanged the conserved Lys in the Walker A motif by Arg in both NBDs of SUR2B, the regulatory subunit of the vascular K(ATP) channel. Then the effect of the mutation on the ATPase-dependent binding of GBC and P1075 to SUR2B and on the activity of the recombinant vascular (Kir6.1/SUR2B) channel was assessed. Surprisingly, in the absence of MgATP, the mutation weakened binding of P1075 and the extent of allosteric inhibition of GBC binding by P1075. The mutation abolished most, but not all, of the MgATP effects on the binding of GBC and P1075 and prevented nucleotide-induced activation of the channel which relies on SUR reaching the posthydrolytic (MgADP-bound) state; the mutant channel was, however, opened by P1075 at higher concentrations. The data provide evidence that mutant SUR2B binds MgATP but that the posthydrolytic state is insufficiently populated. This suggests that the mutation locks SUR2B in an MgATP-binding prehydrolytic-like state; binding of P1075 may induce a posthydrolytic-like conformation to open the channel.
Similar articles
-
Interaction of K(ATP) channel modulators with sulfonylurea receptor SUR2B: implication for tetramer formation and allosteric coupling of subunits.Mol Pharmacol. 2002 Feb;61(2):407-14. doi: 10.1124/mol.61.2.407. Mol Pharmacol. 2002. PMID: 11809866
-
Lipids modulate ligand binding to sulphonylurea receptors.Br J Pharmacol. 2005 Aug;145(7):907-15. doi: 10.1038/sj.bjp.0706252. Br J Pharmacol. 2005. PMID: 15895108 Free PMC article.
-
Potassium channel openers require ATP to bind to and act through sulfonylurea receptors.EMBO J. 1998 Oct 1;17(19):5529-35. doi: 10.1093/emboj/17.19.5529. EMBO J. 1998. PMID: 9755153 Free PMC article.
-
[Activation of ATP-sensitive K+ channels by ADP and K+ channel openers: homology model of sulfonylurea receptor carboxyl-termini].Nihon Yakurigaku Zasshi. 2001 Sep;118(3):177-86. doi: 10.1254/fpj.118.177. Nihon Yakurigaku Zasshi. 2001. PMID: 11577458 Review. Japanese.
-
K(ATP) channel action in vascular tone regulation: from genetics to diseases.Sheng Li Xue Bao. 2012 Feb 25;64(1):1-13. Sheng Li Xue Bao. 2012. PMID: 22348955 Free PMC article. Review.
Cited by
-
KATP Channels in the Cardiovascular System.Physiol Rev. 2016 Jan;96(1):177-252. doi: 10.1152/physrev.00003.2015. Physiol Rev. 2016. PMID: 26660852 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources