Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jan;26(1):1-8.

[Function of plant homeodomain-finger proteins in vernalization pathway in Arabidopsis and other cruciferous plants]

[Article in Chinese]
Affiliations
  • PMID: 20353085
Review

[Function of plant homeodomain-finger proteins in vernalization pathway in Arabidopsis and other cruciferous plants]

[Article in Chinese]
Gongling Hu et al. Sheng Wu Gong Cheng Xue Bao. 2010 Jan.

Abstract

Vernalization makes Arabidopsis and other cruciferous plants flowering earlier. During this process, an important plant homeodomain-finger(PHD-finger) protein named VIN3 is involved. The PHD domain was a conserved zinc-finger domain in eukaryotic organism. It used to take part in the interaction between proteins, especially the modification on histone of nucleosome, such as methylation, acetylation and phosphorylation. In vernaliazation pathway, the proteins translated by VERNALIZATION INSENSITIVE 3(VIN3) and homologous genes could result in methylation on H3K9 and H3K27 and deacetylation on H3K9 and H3K14 on chromatin histone of FLOWERING LOCUS C, a gene that inhibited flowering. The structure state of FLC would be changed from relaxation into compression. Then the transcription activity of FLC could be restrained and it couldn't inhibit flowering any more, so it would induce flowering earlier. This paper reviewed the function of PHD-finger proteins in vernalization pathway in Arabidopsis and other cruciferous plants, and overviewed the vernalization mechanism.

PubMed Disclaimer

Similar articles

MeSH terms