Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;1(7):1370-4.
doi: 10.1021/am900244y.

Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer: PCBM blend for organic photovoltaic devices

Affiliations

Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer: PCBM blend for organic photovoltaic devices

P Suresh et al. ACS Appl Mater Interfaces. 2009 Jul.

Abstract

The effect of the incorporation of a low-band-gap small-molecule BTD-TNP on the photovoltaic properties of vinylene copolymer P:PCBM bulk heterojunction solar cells has been investigated. The introduction of this small molecule increases both the short-circuit photocurrent and the overall power conversion efficiency of the photovoltaic device. The incident photon-to-current efficiency (IPCE) of the device based on P:PCBM:BTD-TNP shows two distinct bands, which correspond to the absorption bands of P:PCBM and BTD-TNP. Furthermore, it was found that the IPCE of the device has also been enhanced even at the wavelengths corresponding to the absorption band of P:PCBM, when the thermally annealed blend was used in the device. This indicates that the excitons that are generated in copolymer P are dissociated into charge carriers more effectively in the presence of the BTD-TNP small molecule at the copolymer P:PCBM interface by energy transfer from P to the small molecule. Therefore, we conclude that the BTD-TNP small molecule acts as light-harvesting photosensitizer and also provides a path for the generated exciton in copolymer P toward the P:PCBM interface for efficient charge separation. The overall power conversion efficiency for the P:PCBM:BTD-TNP photovoltaic device is about 1.27%, which has been further enhanced up to 2.6%, when a thermally annealed blend layer is used.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources