Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 15;26(12):9328-33.
doi: 10.1021/la100253k.

Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation

Affiliations

Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation

Alaaldin M Alkilany et al. Langmuir. .

Abstract

Gold nanorods were synthesized using a seed-mediated wet chemical approach with a quaternary ammonium surfactant, cetyltrimethylammonium bromide (CTAB), that forms a bilayer on the surface of the nanorods. The CTAB molecules in the bilayer were exchanged with a similar polymerizable analog, 11-(acryloyloxy) undecyltrimethyl ammonium bromide (p-CTAB). Mass spectrometric analysis of the degree of exchange of CTAB for p-CTAB, after gold digestion, gave 77 +/- 3 and 23 +/- 1% for p-CTAB and CTAB, respectively. On-rod polymerization with a cationic free-radical initiator was confirmed by FTIR analysis and did not induce aggregation as judged by ultraviolet-visible spectroscopy, transmission electron microscopy, and dynamic light scattering measurements after polymerization. In contrast to the nanorods before polymerization, the nanorods with a polymerized bilayer showed improved stability against dialysis as well as enhanced biocompatibility as measured using a viability assay on cultured human cells. Our results indicate that (1) CTAB molecules on the surface of the gold nanorods are exchangeable with similar surfactants that have a positively charged headgroup and (2) surfactant polymerization on the surface of the gold nanorods enhances both the stability and biocompatibility of these nanomaterials, probably by decreasing the degree of surfactant desorption from the surface.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources