Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;6(3):158-61.
doi: 10.1016/j.nephro.2009.10.006. Epub 2010 Mar 31.

[Membrane roughness: A relevant concept in haemodialysis]

[Article in French]
Affiliations
Review

[Membrane roughness: A relevant concept in haemodialysis]

[Article in French]
Jacques Chanard et al. Nephrol Ther. 2010 Jun.

Abstract

The molecular process that occurs at the interface between blood and a haemodialysis membrane determines the host response. The resulting reactions define the degree of membrane biocompatibility. These reactions are triggered by plasma protein adsorption onto the membrane and blood cell stress. Over the past decade, atomic force microscopy (AFM) has provided mechanistic insights into the molecular level of interactions that occur at the biomaterial surface. AFM provides tridimentional images produced by both changes in applied shear nanoforces and dynamic imaging through the molecular analysis of attraction and repulsion forces. The aim of the present brief review is to shortly present the technique of AFM and its emerging applications in haemodialysis, comparing hydrophilic and hydrophobic structures. Dialysis membrane roughness and protein adsorption mapping can be quantitatively estimated, since AFM resolution power is in the range of a nanometer. It is suggested that estimation of roughness and force mapping determining structure/function relationship should be proposed for the best understanding of membrane biocompatibility.

PubMed Disclaimer

Substances

LinkOut - more resources